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ABSTRACT
Statistical inference often fails to replicate. One reason is that many results may be selected for drawing
inference because some threshold of a statistic like the P-value was crossed, leading to biased reported
effect sizes. Nonetheless, considerable non-replication is to be expected even without selective reporting,
and generalizations from single studies are rarely if ever warranted. Honestly reported results must vary
from replication to replication because of varying assumption violations and random variation; excessive
agreement itself would suggest deeper problems, such as failure to publish results in conflict with group
expectations or desires. A general perception of a “replication crisis” may thus reflect failure to recognize
that statistical tests not only test hypotheses, but countless assumptions and the entire environment in
which research takes place. Because of all the uncertain and unknown assumptions that underpin statistical
inferences, we should treat inferential statistics as highly unstable local descriptions of relations between
assumptions and data, rather than as providing generalizable inferences about hypotheses or models. And
that means we should treat statistical results as being much more incomplete and uncertain than is currently
the norm. Acknowledging this uncertainty could help reduce the allure of selective reporting: Since a small
P-value could be large in a replication study, and a large P-value could be small, there is simply no need to
selectively report studies based on statistical results. Rather than focusing our study reports on uncertain
conclusions, we should thus focus on describing accurately how the study was conducted, what problems
occurred, what data were obtained, what analysis methods were used and why, and what output those
methods produced.
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The “crisis of unreplicable research” is not only about alleged
replication failures. It is also about perceived nonreplication of
scientific results being interpreted as a sign of bad science (Baker
2016). Yes, there is an epidemic of misinterpretation of statistics
and what amounts to scientific misconduct, even though it
is common practice (such as selectively reporting studies that
“worked” or that were “significant”; Martinson, Anderson, and
de Vries 2005; John, Loewenstein, and Prelec 2012). But all
results are uncertain and highly variable, even those from the
most rigorous studies.

Because a small P-value could result from random variation
alone, Fisher (1937) wrote that “no isolated experiment,
however significant in itself, can suffice for the experimental
demonstration of any natural phenomenon.” And Boring
(1919) said a century ago, “scientific generalization is a broader
question than mathematical description.” Yet today we still
indoctrinate students with methods that claim to produce
scientific generalizations from mathematical descriptions of
isolated studies. Naturally, such generalizations will often fail
to agree with those from other studies—and thus statistical
inference will fail to replicate. Because our current academic
reward system is built on single publications (usually reporting
the results of one or a few similar studies), it should come as
no surprise that many conflicting generalizations are published,
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and hence that a high proportion of generalizations must be
wrong.

A core problem is that both scientists and the public con-
found statistics with reality. But statistical inference is a thought
experiment, describing the predictive performance of models
about reality. Of necessity, these models are extremely simplified
relative to the complexities of actual study conduct and of the
reality being studied. Statistical results must eventually mislead
us when they are used and communicated as if they present this
complex reality, rather than a model for it. This is not a problem
of our statistical methods. It is a problem of interpretation and
communication of results.

In the following, we argue that the crisis of unreplicable
research is mainly a crisis of overconfidence in statistical results.
We recommend that we should use, communicate, and teach
inferential statistical methods as describing logical relations
between assumptions and data (as detailed in the Appendix),
rather than as providing generalizable inferences about univer-
sal populations.

1. Inferences Are Not About Hypotheses

A statistical model is a set of assumptions, and thus a compound
hypothesis, about how the data could have been generated. The
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model matches reality to the degree that assumptions are met,
starting from the assumptions that we measured what we think
we measured and that measurement errors were either absent
or adequately accounted for. Such model assumptions are part
of what are called “auxiliary hypotheses” (Popper 1968), “auxil-
iary theories” (Meehl 1990), or “currently subordinate factors”
(McShane et al. 2019).

Thus, statistical models imply countless assumptions about
the underlying reality. A null hypothesis such as “the means
of these two populations do not differ” is an explicit assump-
tion. Further assumptions that are often explicitly addressed in
research reports are that sampling was random or that residuals
are independent and identically distributed. Other assumptions
may not even be recognized or mentioned in research reports,
such as that there was no selection of particular results for
presentation, or that the population from which we drew our
random sample is equivalent to the population we have targeted
for inference. Whether it is assumptions that are reviewed by
inspecting residuals, or further assumptions that link statistics
to reality, the validity of statistical inferences depends on the
entire set of assumptions.

For example, we should think of a P-value1 as referring not
only to the hypothesis it claims to test, such as a null hypothesis.
A P-value refers to the entire model including other usually
explicit assumptions like randomization of treatment and lin-
earity of effects, plus usually implicit procedural assumptions
such as that the equipment for taking measurements was in
perfect working order (Greenland et al. 2016; Greenland 2017;
Amrhein 2018). Whether recognized or not, these assumptions
underpin the usual inferences from a test (Greenland 2019b). A
small P-value is the net result of some combination of random
variation and violations of model assumptions, but does not
indicate which (if any) assumption is violated.

Yes, a small P-value may arise because the null hypothesis
is false. But it can also mean that some mathematical aspect of
the model was not correctly specified, that sampling was not
a hundred percent random, that we accidentally switched the
names of some factor levels, that we unintentionally, or inten-
tionally, selected analyses that led to a small P-value (down-
ward “P-hacking”), that we did not measure what we think we
measured, or that a cable in our measuring device was loose
(Amrhein 2018). And a large P-value may arise from mistakes
and procedural errors, such as selecting analyses that led to a
large P-value (upward P-hacking), or using a measurement so
noisy that the relation of the measured construct to anything
else is hopelessly obscured.

2. Replication Studies Have a False-Negative Problem

Even the best single studies will be imperfect. In addition to
random variation, their results will usually vary from replication
to replication because of varying assumption violations, whether
recognized or hidden, and thus the observed effect sizes can

1 We focus on P-values and confidence intervals not because they are better
or worse than other methods, but because they are probably the most
often used, and most often misused, inferential statistics. Throughout the
text, P is the random variable and p is its observed value (realization) in a
given sample.

easily differ across settings. Consider the replication project by
the Open Science Collaboration (2015): Of 97 psychological
studies with “significant” results (p ≤ 0.05) out of 100 that
were subject to replication, 35 had p ≤ 0.05 in the replication.
This is much less than would have been expected if all original
null hypotheses were false and only random variation caused
differences between the original and replication—under these
circumstances, with an average power of 92% in the replications,
89 of the 97 replicates were expected to have p ≤ 0.05. One
explanation by the authors is that in the original studies, results
were selected for reporting based on having p ≤ 0.05, which
led to inflated effect sizes (see next section) that could not be
replicated.

The reports of such replication projects are often misinter-
preted as showing that the original “significant” studies were
mostly or entirely false positives. To see the error in such inter-
pretations, consider that the Open Science Collaboration (2015)
observed 97-35 = 62 replications with p > 0.05 for which the
original study had p ≤ 0.05, which is 64% of the 97 replications.
This emphatically does not mean that 64% of the 97 original
null hypotheses with “significant” P-values were correct, or that
62 of the 97 “significant” results were false positives. Why not?
If as suggested (and indicated by the replications) the original
reported effect sizes were largely inflated due to selective report-
ing based on p ≤ 0.05, then the actual effect sizes (both in
the original and replication studies) could easily be too small
to provide high power for replication (Camerer et al. 2018).

Suppose, for example, that among the 97 “significant” origi-
nal studies, 70% of the null hypotheses were false, for a total of
0.70(97) = 68 false nulls, and the average power for the effects in
these non-null cases was 50% in the replication studies (and not
92% as calculated based on the probably inflated original effect
sizes). Then the expected number of “true positive” replications
(those with p ≤ 0.05 for a false null) would be 0.50(68) = 34,
while the number of “false positive” replications (those with
p ≤ 0.05 for a true null) would be 0.05(97-68) = 1.45, resulting
in a total of about 35 out of 97 replications having p ≤ 0.05,
as observed. That means that, given selective reporting in the
original studies, the observed 64% of the 97 replication attempts
with p > 0.05 could have been expected even if only 97-68 = 29
or 30% of the null hypotheses were correct!

Thus, with selective reporting in the original studies, it may
be unsurprising to get “nonsignificant” results in about two-
thirds of replications. And even with no selective reporting and
only random variation present, replication studies remain sub-
ject to what may be severe false-negative errors. Consequently,
“non-significant” replications (those with p > 0.05) do not
reliably flag original studies as being false positives. For example,
with a statistical power of 80%, two studies will be tradition-
ally judged as “conflicting,” meaning that one is “significant”
and the other is not, in one third of the cases (Greenland et
al. 2016; Amrhein, Korner-Nievergelt, and Roth 2017). This
means that, unless statistical power of the replication is nearly
100%, interpretations of replication attempts must allow for
false-negative errors as well as false-positive errors, and that
“significance” and “non-significance” cannot be used to reliably
judge success or failure of replication (Goodman 1992; Senn
2001, 2002). As importantly, valid interpretation must take into
account any background research (prior information) on the
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hypothesis under study, especially if there are conflicts between
the original and replication studies.

Another often overlooked point about hacking and replica-
tion failures is that both random and selection artefacts will
arise even if we ban all tests and focus instead on estimates.
Some degree of variation, and hence nonreplication, is the norm
across honestly reported studies, even when all assumptions are
met, and estimates can be selected for reporting based directly
on their size rather than their P-value. Add other assumption
violations to these problems and we will find that error rates
are usually far from the nominal rates given in the report—
for example, a 95% confidence interval cannot realistically be
claimed to have as much as 95% coverage of the true effect when
study imperfections exist. Consequently, having confidence in
generalizations from single studies means having overconfi-
dence in most cases. Inference that could be called trustworthy
would require merging information from multiple studies and
lines of evidence.

3. Overconfidence Triggers Selection Bias

Unfortunately, even a combination of studies does not guarantee
that inferences will be valid. As noted above, published results
tend to be biased, for example because they may be selected from
unpublished results based on some statistical criterion. Such
bad yet common scientific practice introduces bias by accu-
mulating statistical inferences that go into a certain direction,
typically emphasizing results that cross some P-value threshold
(Amrhein, Korner-Nievergelt, and Roth 2017; Locascio 2017).

We suspect that a major driver of result-selection bias is
overconfidence in statistical inference. For decades, scientists
were taught to judge which results are trustworthy and which
are not, and which results are thus worth being published or
not, based on statistics obtained from single studies. Statistics
was misused as an automated scientific decision machine, both
for statements about hypotheses and for selection of studies
for publication. And this made interpretation, publication, and
public advertising much easier, because everybody assumed
that statistical inferences based on P-value thresholds or other
rigid criteria would be “reliable,” in the sense that a replication
would probably meet the same thresholds or criteria again. So
if researchers expect that a small P-value or a short interval
estimate indicate “reliable” results, while all other results are
“unreliable,” they may be “prepared to ignore all results which
fail to reach this standard” (Fisher 1937, p. 16; one of many pub-
lished pleas by various authors encouraging selective reporting).

But any selection criterion will introduce bias. If there is a
tendency to publish results because the estimates are yellow,
because interval estimates are short, and because P-values are
small or the point estimates are far from null, then the pub-
lished literature will become biased toward yellow results with
underestimated variances and overestimated effect sizes. The
latter effect is the “winner’s curse,” or inflation of effect sizes, that
is reflected in the findings of the Open Science Collaboration
(2015): the average effect size in the original studies was about
twice as large as in the replication studies that reported all results
and thus did not suffer from selection bias.

Even if authors report all study outcomes, but then select
what to discuss and to highlight based on P-value thresholds or

other aids to judgment, their conclusions and what is reported in
subsequent news and reviews will be biased (Amrhein, Korner-
Nievergelt, and Roth 2017). Such selective attention based on
study outcomes will, therefore, not only distort the literature but
will slant published descriptions of study results—biasing the
summary descriptions reported to practicing professionals and
the general public.

One way to reduce selective reporting and attention is to
maintain that all results are uncertain. If we obtain a small P-
value, a large effect estimate, or a narrow interval estimate—
or even all three—we should not be confident about textbook
inferences from these results. In one of the next replications, p
will be large, the effect estimate will be small, or the interval
estimate wide, and thus the textbook inferences will shift dra-
matically due to random variation or to assumptions we have
not modeled. Because of this uncertainty, there is simply no need
to selectively report studies based on statistical results.

We should thus “move toward a greater acceptance of uncer-
tainty and embracing of variation” (Gelman 2016) and focus
on describing accurately how the study was conducted, what
problems occurred (e.g., nonresponse of some subjects, missing
data), and what analysis methods were used, with detailed data
tabulation and graphs, and complete reporting of results. The
advent of online supplements and preprint servers eliminate the
common excuse that space limitations prevent reporting such
detail.

4. Don’t Blame the P-value

A clear sign that overconfidence has ruled the era of hypothesis
testing is that many people still are surprised by the “dance
of the P-values” (Cumming 2014), that is, by the way a valid
P-value bounces around its range even in the largest of sam-
ples. This variability means that p < 0.05 is no guarantee
for p < 0.05 in a replication (Goodman 1992; Senn 2001,
2002; Gelman and Stern 2006); after all, if the (null) hypothesis
tested is correct and experimental conditions are ideal, the P-
value will vary uniformly between 0 and 1. And even if our
alternative hypothesis is correct, the P-value in the next sample
will typically differ widely from our current sample: “The fickle
P-value generates irreproducible results” (Halsey et al. 2015), at
least if reproducibility is defined by whether p is above or below
a threshold and the power is not very high.

But the P-value itself is not supposed to be “reliable” in
the sense of staying put (Greenland 2019a). Its fickleness indi-
cates variation in the data from sample to sample. If sample
averages vary among samples, then P-values will vary as well,
because they are calculated from sample averages. And we don’t
usually take a single sample average and announce it to be
the truth. But if instead of simply reporting the P-value, we
engage in “dichotomania” (Greenland 2017) and use it to decide
which hypothesis is wrong and which is right, such scientifically
destructive behavior is our fault, even if socially encouraged; it
is not the fault of the P-value.

Further, if we overlook the sensitivity of P-values to possible
violations of background assumptions, by assuming that P-
values are only about deciding whether to reject “null hypothe-
ses,” we are privileging what may be a scientifically irrelevant
hypothesis and are engaging in “nullism,” a compulsion to test
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only one hypothesis among many of importance. But again, such
bad behavior is our fault, even if socially encouraged. We could
instead provide P-values for relevant alternatives, and arguably
should do so if we compute any P-value at all (Poole 1987a,
1987b). And if we interpret a small null P-value as providing
support for some alternative hypothesis (which currently seems
to be a standard interpretation) without testing the alternative
as well, this too is our fault, not the fault of the P-value.

5. Ban Statistical Tests?

It may help to ban some practices, at least temporarily and in
specific contexts. Despite the general acceptance of alcohol2
in relaxed settings and possible beneficial effects from light
use, we ban its drinking before or during driving, and recog-
nize that its use easily becomes abuse. Reaching for statistical
tests to force out “inferences” (whether traditional “p ≤ α”
testing or substitutes like tests using Bayes-factor criteria) is,
like drinking alcohol, a culturally ingrained habit. Statistical
testing (like alcohol) often gives the wrong impression that com-
plex decisions can be oversimplified without negative conse-
quences, for example, by making decisions solely because p was
above or below some cutoff like 0.05. And many researchers are
addicted to such oversimplification. These addictions are worth
breaking.

At the very least, partial or temporary bans are one way to
force researchers to learn how to analyze data in alternative
ways (Trafimow and Marks 2015). Hopefully, thinking about
advantages and disadvantages of alternatives will lead to more
sober interpretation of statistics. One concern, however, is that
complete prohibition could lead to misuse and abuse of other
methods, such as Bayesian techniques—which have an addi-
tional source of non-replicability insofar as what are acceptable
priors can vary dramatically across research groups.

6. Long Live No King

Fixed-cutoff (α-level) hypothesis testing has been king for over
80 years. We propose not to banish the king—a fixed-cutoff
decision procedure may be useful, for example, in industrial or
laboratory quality control, or “sampling tests laid down in com-
mercial specifications” (Neyman and Pearson 1933), in which
automated decisions to stop a production line or to recalibrate
equipment may be necessary. For scientific inference, however,
we hope that dichotomania from which such procedures suffer
can be cured by abandoning them in favor of data descrip-
tion and direct presentation of precise P-values—including P-
values for alternative hypotheses (Poole 1987a, 1987b; Cohen
1994; Ziliak and McCloskey 2008; Hurlbert and Lombardi 2009;
Amrhein, Korner-Nievergelt, and Roth 2017; Greenland 2017;
Amrhein and Greenland 2018; Trafimow et al. 2018; Greenland
2019a, 2019b; McShane et al. 2019). Parallel criticisms and
remedies apply to tests or decisions (such as whether to report
or highlight results) based on Bayes factors, posterior odds, or
any other statistical criterion.

2 We prefer this analogy above comparing P-values or hypothesis tests with
guns, as we have heard or read sometimes.

Yes, sometimes we need to make decisions in science, for
example, whether to further pursue a study or not. For such a
decision, we will usually weigh scientific and personal costs and
benefits of our decision, applying informed personal judgment
(Gigerenzer 1993). But when it comes to weigh evidence against,
or in favor of, a scientific hypothesis, statistical tests cannot
suffice, and may even be destructive if degraded into a binary
form as in reporting tests as significant/nonsignificant, or in
basing conclusions on whether the null value was included in
or excluded from an interval. This is especially true when (as
almost always) these results are sensitive to doubtful assump-
tions, such as absence of measurement-error dependencies. And
even in the unlikely case that all model assumptions are met,
we would still need to consider costs and benefits, as well as
the published and unpublished literature, to judge a scientific
hypothesis as being largely correct (subject to further evidence
to the contrary). We hope that classical hypothesis testing will
be retired quickly from research reporting, so that regicide is
not necessary.

7. Empire of Diversity

But what comes next? There are countless possibilities. The
most common proposal is to replace hypothesis tests with
interval estimates. While doing so is helpful for sophisticated
researchers, it has not reduced what we see as the core
psychological problems—which is unsurprising, because the
classical confidence interval is nothing more than a summary of
dichotomized hypothesis tests. Consider that a 95% confidence
interval encompasses a range of hypotheses (effect sizes)
that have a P-value exceeding 0.05. Instead of talking about
hypothetical coverage of the true value by such intervals,
which will fail under various assumption violations, we can
think of the confidence interval as a “compatibility interval”
(Greenland 2019a, 2019b), showing effect sizes most compatible
with the data according to their P-values, under the model
used to compute the interval. Likewise, we can think of a
posterior probability interval, or Bayesian “credible interval,” as
a compatibility interval showing effect sizes most compatible
with the data, under the model and prior distribution used
to compute the interval (Greenland 2019a). Again, whether
such intervals include or exclude zero should play no role in
their interpretation, because even with only random variation
the intervals from different studies can easily be very different
(Cumming 2014).

With additional (and inevitable) nonrandom variation, the
true effect size will frequently be outside the interval. In reality,
it will not happen that every assumption is met, nor will we be
aware of every assumption. Stating that our data “support” any
value in the compatibility interval (e.g., a zero effect), or that,
upon unlimited replication, the intervals would cover the true
value at some rate, or that the interval “measures uncertainty” by
indicating the range of possible effect sizes (as opposed to com-
patible effect sizes, given the model), makes the compatibility
interval into an overconfidence interval.

To avoid the dichotomization retained by interval estimates,
one could report a measure of refutational evidence, such as a
traditional P-value in a continuous fashion (as recommended by
classic texts on testing such as Lehmann 1986, p. 71), reporting
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an observed P-value as a measure of the degree of compati-
bility between the hypothesis or model it tests and the data
(Greenland 2019a). Better still, we could report the Shannon
information or S-value (surprisal) of the test, − log2(p), which is
a measure of the evidence against the model supplied by the test,
expressed in units of bits (binary digits) of information. Among
its advantages, the S-value is unbounded above and thus difficult
to misinterpret as a hypothesis probability (Greenland 2017,
2019a, 2019b). Considering that the 95% confidence interval is
the range in which the parameter values have p > 0.05, the
values in the interval are those for which the S-value s is less
than − log2(0.05) = 4.3. This means that, under the model
used to construct the interval (e.g., a regression model), the
values in a 95% confidence interval have only about 4 bits or less
information against them; that is, very little information indeed
(4 bits is the same as the evidence against “fairness” of coin tosses
versus loading for heads provided by obtaining 4 heads in a row).

If we want to compare the relative support for different
parameter values or models, we could use likelihood ratios or
Bayesian methods. But we should not lapse back into dichoto-
mous thinking by using some P-value threshold, or by making
binary inferences based on confidence intervals or Bayes factors.
And we should not expect posterior probabilities to solve the
problems, especially since they rely on the same often ques-
tionable assumptions about the data-generating model that both
hypothesis tests and confidence intervals use.

The empire of “statistical significance” has its roots in the
19th century writings of Edgeworth (1885) and reached full
dominance with the spread of cutoffs for testing, formalized
by Jerzy Neyman and Egon Pearson as Type-I error rates. Like
the political empires of their period, such hypothesis testing
for scientific (as opposed to mechanical) inference is a relic
of a bygone era, whose destructive effects reverberate to this
day. We hope this era is over. As for what comes next, there is
no substitute for accepting methodologic diversity (Good 1957;
Cox 1978; Box 1980; Barnard 1996; Little 2006; Senn 2011;
Efron and Hastie 2016; Crane 2017), with careful assessment of
uncertainty as the core motivation for statistical practice (e.g.,
by discussing the effect sizes compatible with the data, given the
model, as outlined above).

8. The Replacement for Hypothesis Tests

We “don’t look for a magic alternative to NHST [null hypothesis
significance testing], some other objective mechanical ritual
to replace it. It doesn’t exist” (Cohen 1994). And if it existed,
we would probably not recommend it for scientific inference.
What needs to change is not necessarily the statistical methods
we use, but how we select our results for interpretation and
publication, and what conclusions we draw. Why would we
want a mechanical decision procedure for single studies, if not
for selecting results for publication or interpretation? As we
described above, every selection criterion would introduce bias.
Therefore, we join others who have advised that we should, to
the extent feasible:

(a) Target results for publication and interpretation before
data are collected, that is, state our hypotheses and predic-
tions in a defined protocol or a binding research proposal.

(b) Before analyzing data (and preferably before collecting
them), make an analysis plan (i.e., a pre-analysis protocol),
setting out how data will be analyzed; and, in the pub-
lication, show what results the protocol produced before
displaying the results of any analyses deviating from the
predefined protocol.

(c) Emphasize and interpret our estimates rather than tests,
explicitly discussing both the lower and upper limits of our
interval estimates.

(d) When reporting statistics, give their precise values rather
than mere inequalities; for example, if we are reporting a
P-value and it is 0.03, report “p = 0.03,” not “p < 0.05.”3

(e) Not use the words “significant” or “confidence” to describe
scientific results, as they imply an inappropriate level of
certainty based on an arbitrary criterion, and have pro-
duced far too much confusion between statistical, scien-
tific, and policy meanings.

(f) Acknowledge that our statistical results describe relations
between assumptions and the data in our study, and that
scientific generalization from a single study is unwar-
ranted.

(g) Openly and fully report our detailed methods, materials,
procedures, data, and analysis scripts.

As an example, consider a study by Brown et al. (2017), who
reported that “in utero serotonergic antidepressant exposure
compared with no exposure was not associated with autism
spectrum disorder in the child,” based on an estimated hazard-
rate ratio (HR) of 1.61 (a 61% rate increase in the exposed
relative to the unexposed) and a 95% confidence interval of
0.997 to 2.59. As is often the case, the authors misused the
confidence interval as a hypothesis test, and they claim to have
demonstrated no association because the lower limit of the
interval was slightly below no association (which corresponds
to a hazard-rate ratio of HR = 1), ignoring that the upper limit
exceeded 2.50. A more correct summary of the results would
have been: “Our estimate of the hazard-rate ratio was 1.61,
and thus exposure could be associated with autism; however,
possible hazard-rate ratios that are highly compatible with our
data, given our model, ranged from 0.997 (essentially no asso-
ciation) to 2.59 (a relatively strong association).” If applicable,
this could then be followed by a discussion of why the authors
seem to think the exposure effect might be negligible despite the
association, and how strong they judge their evidence not only
based on the width of an interval estimate, but also in view of
possible shortcomings of their study, of their prior knowledge
about other studies on autism, and of possible costs of their
interpretation for the health of the patients.

Had the authors found an interval of 1.003 to 2.59 rather than
0.997 to 2.59, the reporting should have been the same. Even
with an interval of 0.900 to 2.59, the description of the results
should be largely similar—the point estimate would still be a
HR well above 1, indicating a possible positive association. What
would need to change with the latter interval is the description
that not only relatively large positive, but also small negative
associations would fall within the interval.

3 An exception: If a P-value is below the limit of numerical accuracy of the
data, an inequality would be called for, but the precision would be context
dependent: e.g., p < 10−8 is typical in genomics, p < 0.001 is common in
medicine and ecology.
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9. Anything Goes?

So what do we conclude from a study like Brown et al. (2017)?
If we would interpret an interval of 1.003 to 2.59 and of 0.997
to 2.59 in the same way, does that mean that the floodgates of
“anything goes” are wide open? Yes, the floodgates should be
open—for reporting our results. Everything should be published
in some form if whatever we measured made sense before we
obtained the data because it was connected in a potentially useful
way to some research question. If after doing the study, it appears
the measure did not make sense or the methods were faulty, at
least other researchers can learn that lesson without repeating
the error—provided our report contains enough detail to allow
such critical evaluation.

However, the floodgates should be closed for drawing conclu-
sions from virtually any single study. For example, because they
found a confidence interval that barely included the null value,
Brown et al. (2017) reported conflict with previously observed
associations that were nearly the same size (hazard ratios around
1.7) but had confidence intervals that did not include the null
value. We think that, at most, a conclusion could be drawn that
the new study was largely consistent with previous studies, but
that the null value was also compatible with their data, given the
model.

In view of all the unmodeled uncertainties, it would be
good to plan and publish single studies with the goal of their
easy entry into meta-analyses. In the words of Trafimow et
al. (2018): “It is desirable to obtain precise estimates in those
studies, but a more important goal is to eliminate publication
bias by including wide confidence intervals and small effects in
the literature, without which the cumulative evidence will be
distorted.”

10. Abandon Statistical Inference?

We do not suggest to completely abandon inference from our
data to a larger population (although the title of a preprint of this
paper was “Abandon statistical inference”; Amrhein, Trafimow,
and Greenland 2018). But we say this inference must be scien-
tific rather than statistical, even if we use inferential statistics.
Because all statistical methods require subjective choices (Gel-
man and Hennig 2017), there is no objective decision machine
for automated scientific inference; it must be we who make the
inference, and claims about a larger population will always be
uncertain.

So when can we be confident that we know something?
This is the topic of the vast domains epistemology, scientific
inference, and philosophy of science, and thus far beyond the
scope of the present paper (and its authors). Nonetheless, a
successful theory is one that survives decades of scrutiny. If
every study claims to provide decisive results (whether from
inferential statistics or narrative impressions—or a confusion of
the two), there will be ever more replication failures, which in
turn will further undermine public confidence in science. We
thus believe that decision makers must act based on cumulative
knowledge—which means they should preferably not rely solely
on single studies or even single lines of research (even if such
contributions may determine a decision when all other evidence
appears ambiguous or unreliable).

11. If We Are Researchers …

…and we obtained a large P-value for the null hypothesis or
an interval estimate that includes a null effect, our interval will
show that the null hypothesis is only one of many different
hypotheses that are compatible with the data (Rothman, Green-
land, and Lash 2008; Greenland et al. 2016). Unlike what Brown
et al. (2017) suggested with their hazard-rate ratios, we cannot
claim our statistics indicate there is no effect, because even if the
data remain consistent with a zero effect, they remain consistent
with many other effects as well. A “proof of the null hypothesis”
such as “the earth is flat (p > 0.05)” is, therefore, not possible
(Greenland 2011; Amrhein, Korner-Nievergelt, and Roth 2017).
And we should remember there are lots of additional hypotheses
outside the interval estimate that will also be compatible with
our data, due to methodologic limitations that we have not
modeled.

Thus, we should not be overconfident about our “weak evi-
dence” from a large P-value or an interval estimate that includes
the null. Almost never will we have found absolutely no effect.
Let us free our “negative” results by allowing them to be positive
contributions to knowledge (Amrhein, Korner-Nievergelt, and
Roth 2017). This means that, unless the interval estimate is
entirely within an explicit interval of “practical equivalence”
to the null,4 we should first and foremost ban the following
statements from our thinking, from our papers, and from our
talks: “there was no effect,” “there was no difference,” “there was
no interaction,” or “we deleted this term from the model because
it had no influence.”

Such statements will usually be wrong even if our point
estimate is exactly null (and thus p = 1), because our interval
estimate will usually show there are many important non-null
effects that are highly compatible with our data. This means that
an outcome of a study can only be “negative” in a falsificationist
sense of finding little incompatibility between the data and the
predictions of a model that includes a hypothesis of no effect.
A P-value of 1 for the test of the null only means our data are
perfectly compatible with our model (including the null hypoth-
esis); but “perfectly compatible” with one hypothesis, or model,
does not mean that all other hypotheses, or models, are refuted.
Indeed, typical interval estimates will reveal a large number of
non-null hypotheses that we would call highly compatible with
our data (e.g., because their P-values exceed 0.05), given our
model is correct.

Thus, most studies with large P-values or interval estimates
that include the null should be considered “positive” in the
sense that they leave open the possibility of important effects,
even if they also leave open the possibility of no effect. The
best we can do is describe the values covered by our interval
estimates—and if those values have qualitatively different prac-
tical consequences, we should admit that our current set of data
could not settle the matter even if we knew that all the auxiliary
assumptions were correct.

4 In terms of α-level equivalence testing (Wellek 2010; Lakens et al. 2018), for
example, this means that all effects with symmetric two-sided p > 2α are
inside the interval of equivalence.
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Conversely, if we believe we have “strong evidence” because
our P-value is small and our point estimate is large, or because
our interval estimate is not near the null, we are placing too
much faith in our inferential statistics. Keep in mind that these
statistics do not “measure” uncertainty. At best, the interval
estimate may give a rough idea of uncertainty, given that all
the assumptions used to create it are correct. And even then,
we should remember the “dance of the confidence intervals”
(Cumming 2014) shows a valid interval will bounce around
from sample to sample due to random variation.

Because every inferential statistic (including P-values, inter-
val estimates, and posterior probabilities) is derived from the
multiple implicit as well as explicit assumptions that compose
the model, we should treat these statistics as descriptions of
the relation of the model to the data rather than as statements
about the correctness of the model. This discipline may be more
difficult for Bayesians to accept, since Bayesian methods do pro-
duce hypothetical probabilities of models by using assumptions
hidden in restrictions on the models considered. Regardless, it
is hard enough to describe the known assumptions about our
model. We should not draw inference and generalize based on
assumptions we cannot be certain about or we do not even think
about.

For example, a P-value is merely the probability of one par-
ticular test statistic being as or more extreme than observed in
our particular study, given that the model it is computed from is
correct. No inferential meaning need be attached to that. For
the next set of data, the P-value will be different. A small P-
value is just a warning signal that the current model could have a
problem, so we should check our model assumptions (including
an assumption such as “the means of these two populations
do not differ,” i.e., our tested hypothesis). And this assumption
checking does not only mean inspecting residuals, but also
checking the extent of deviations of our study from a perfect ran-
domized experiment or random survey, whether from failures of
protocol, measurement, equipment, or any of the innumerable
details that real research must confront (Greenland 2017; Stark
and Saltelli 2018).

Science includes learning about assumption violations, then
addressing those violations and improving the performance of
our models about reality. Statistics can help by formalizing parts
of the models, and by assisting in careful assessment of uncer-
tainty. We should thus communicate our limited conclusions
about our data, not our generalized inferences about some ill-
defined universal population. And decisions to communicate
and interpret a result should not be based on P-values, nor on
any other statistic. Presentations that start with analysis plans
that were formulated before the analysis (pre-analysis protocols)
can help strengthen both the validity and credibility of our
inferences. The reported description of our results will be a good
description if it is complete and honest. If we think we did a good
study, we should thus be modest about our conclusions, but be
proud about our painfully honest and thorough description and
discussion of our methods and of our data.

And if we are working as journal editors, we should be proud
about our exhaustive methods sections and consider “results
blind evaluation” of manuscripts (Locascio 2017), that is, basing
our decisions about the suitability of a study for publication on
the quality of its materials and methods rather than on results

and conclusions; the quality of the presentation of the latter is
only judged after it is determined that the study is valuable based
on its materials and methods.

12. If We Are Science Writers and Journalists …

…we should continue writing about isolated experiments and
replications. Single studies are the life blood of science. If we
think we found a good study, or a bad study, we may report it.
But let us try not to be impressed by what researchers say is sur-
prising about their study—surprising results are often products
of data dredging or random error, and are thus less reproducible
(Open Science Collaboration 2015). So surprising results will
often not point to general scientific discoveries, although they
may still be valuable because they lead to new insights about
study problems and violations of assumptions.

Then too, we should not overemphasize what researchers say
was unsurprising, since that may largely reflect their conformity
to group expectations rather than what the data would actually
show under close scrutiny. Indeed, we might consider not asking
researchers about surprising or unsurprising results, but instead
ask which results appeared most boring because they were
shown several times before and thus seem to be trustworthy.
More generally, we should not fall for overconfident claims by
researchers or by other science writers or journalists. Rather,
we should try to uncover overconfident claims and the bad
incentives that lead to those claims.

Clear signs of overconfidence are formulations like “we
proved” or “we disproved” or “we rejected” a hypothesis, or
“we have shown” or “demonstrated” a relation exists or is
explained in some manner. So are “there was no effect/no
association/no difference” (which almost always would be an
impossible proof of the null hypothesis), and “our study con-
firms/validates/invalidates/refutes previous results” (because
a single study has nothing definitive, it can only add one
further data point to the larger picture; at most it can be
“consistent/inconsistent with previous results”). If we find any of
those or related phrases, we should question the interpretations
being offered in the paper and search for arguments provided
by the authors. If the main argument for a conclusion is that
the results were “significant” or “not significant,” this does not
automatically mean that the study is bad. But it does flag the
paper as likely providing an unreliable interpretation of the
reported results.

The hard truth is that journalists cannot decide whether a
result from a single study can be generalized—and the same is
usually true for the authors of the study, and for editors and
external experts. An important role for statistics in research is
the summary and accumulation of information. If replications
do not find the same results, this is not necessarily a crisis, but
is part of a natural process by which science evolves. The goal of
scientific methodology should be to direct this evolution toward
ever more accurate descriptions of the world and how it works,
not toward ever more publication of inferences, conclusions, or
decisions.
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Appendix: A Descriptive View of P-values and Posterior
Probabilities

We here provide a more technical explanation of why inferential statis-
tics like P-values and posterior probabilities can be interpreted as being
descriptive of logical relations between assumptions and the observed
data.

Consider a data-generating model M we wish to test and a test
statistic (function of the data) T that has been selected as a summary
measure of the absolute deviation of the data from the model predic-
tions, with an observed value for T of t.5 Here, M is the assumption set
or constraints used to derive the distribution of T. To say that this test
gave back p = 0.04 is to say that under the model M, the probability
that T ≥ t is 0.04, or symbolically that Pr(T ≥ t|M) = 0.04. This
Fisherian6 P-value of 0.04 is thus a logical inference from the model M
and the observation that T = t, the final deduction “p = 0.04” from a
derivation that begins with the premises “the data were generated from
M” and “those data produced T = t.” Thus the model and data are in
a logical relation in which their conjunction implies a probability p for
the tail event T ≥ t.

Without further elements (such as an α-level cutoff) this observed
P-value p implies absolutely no decision, inference, bet, or behavior.
What people make of p = 0.04 in these or other practical terms requires
additional contextual detail such as a loss function, acceptable error
rates, or whatever else the analysis team can bring to bear (although
usually it is just social conventions like α = 0.05 and program defaults
that determine what gets claimed).

The same comments apply to posterior probabilities. Now, how-
ever, “the model” (the set of assumptions used for deducing posterior
probabilities) must include or entail a prior distribution Pr(M) over
some restricted model family for generating a probability Pr(x|M) for
the observed data x so that the full model provides a formula for
Pr(x, M) = Pr(x|M)Pr(M) (Box 1980). Again the deduction of Pr(M|x)

follows by conditioning on the observed data x (or equivalently on a
sufficient statistic t, using T = t as a premise); that is, the posterior
Pr(M|x) becomes a deduction from the observed data x and the full
model Pr(x,M). Nonetheless, because one cannot construct a prior
distribution over every conceivable model, this deduction is limited by
the assumption that the model family used can approximate (within
statistical error) the true data-generating process. In contrast, Fisherian
P-values can be used to test this assumption before using it in the
Bayesian deduction (Bayarri and Berger 2000; Robins et al. 2000).
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