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RESPONSE TO THE LETTER TO THE EDITOR

Replication: Do not trust your
p-value, be it small or large

Colleagues have joined me in this Reply –
we are grateful for the chance to consider
the letter by Raiteri (2021) which covered
one important part of Gandevia’s editorial
(Gandevia, 2021). The piece included one
figure showing two curves in an attempt to
deal with the interpretation of P-values and
the replicability of an experiment based on
P-values.
The intended messages from this
component of the editorial were the
following. First, the likelihood to obtain
P< 0.05 in a replication increases markedly
if very low P-values are obtained in the
initial experiment (say below 0.001)
(see Fig. 1 in Gandevia, 2021). Second,
any initial P-value around 0.05 does
not signify any trend at all because the
probability of an exact replication to
obtain P < 0.05 is approximately 50%
(see below). This message is intended
to deflate any excitement accompanying

an initial P-value just below 0.05 as an
indication of significance. Perhaps you
could equally think of such a value as
a trend for in-significance. This point is
not contested. Interestingly, for an initial
P-value around 0.01 the probability of
obtaining P < 0.01 in a replication is
also approximately 50%. Third, the pre-
diction intervals for a replication are
extraordinarily wide – almost unbelievably
so. For an initial experiment which obtains
P = 0.05, the 80% interval for replication
P-values is huge: from 0.0002 to 0.65 (for a
two-tailed test; see Fig. 1). (It was given for
a one-tailed test in the original graph with a
lower, but still huge, interval from 0.00008
to 0.44 (Gandevia, 2021)). The above values
for the prediction intervals are derived
from Cumming (2008; Appendix B). They
assume exact replications that are identical
with the initial experiment, except using a
new sample. It is not required to assume,
as Raiteri (2021) stated, that the initial
experiment estimated the true effect size
exactly. In summary, the prediction inter-

vals for replication P-values, the grey bars in
Fig. 1, arise from idealized exact replications
but, even so, are alarmingly wide.
Now to some clarification of the first and
third messages.
For the first message, the data in the
original figure (Gandevia, 2021) were taken
from Goodman (1992) for P = 0.001–0.10
and from Curran-Everett (2016) for
P < 0.001. They relate to an attempted
exact replication, notwithstanding the
acknowledged difficulty in such an attempt.
The original text neglected to say that
the probabilities were for the preferred
two-tailed replication. Goodman’s data for
P = 0.001–0.10 were chosen deliberately
from the right column of his Table 1 because
it used ‘the more realistic scenario that we
do not know that μ [true effect size]…
and our uncertainty is modelled as a prior
probability of μ that is locally uniform,
that is the distribution of μ prior to the
second experiment is proportional to its
likelihood function in the first experiment’.
It deserves mention that the general shape

Figure 1. The neglected curves: probability that an exact, perfectly executed replication study will
obtain P < 0.05, plus 80% prediction intervals for the P-value given by a replication
The continuous line in Fig. 1 shows the probability (see left axis for values) that a replication study will obtain P <

0.05 for a given P-value in the initial study (data from Goodman, 1992), with extrapolation dotted. For example,
if an initial experiment obtains P = 0.05, there is only a 50% chance that an attempted exact replication will
obtain a P < 0.05. Even if the initial P = 0.01, the chance is only 66% that an attempted replication will obtain
P < 0.05 (i.e. a one-third chance to obtain P > 0.05). Grey bars represent the intervals that include the P-value
given by a replication with an 80% chance (see right y-axis for values). The shaded area allows this prediction
interval to be read off for initial P-values up to 0.1. Data are derived from the formula in Cumming (2008). For
example, if an initial experiment generates P = 0.05, the 80% prediction interval for replication experiments will
range from P = 0.0002 to 0.65 in idealized studies without imperfections. Realistically, this large range may even
be an underestimate (see text). One of us (S.G.) still maintains that, for physiologists, teaching the messages from
this pair of curves should be as important as teaching the haemoglobin dissociation curve
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of the relationship between the P-value
from the original experiment and the
probability of its replication (at say 0.05)
is largely independent of sample size and
also the statistic used (Boos & Stefanski,
2011). Further, the approximate shape can
be predicted by a number of statistical
approaches (Boos & Stefanski, 2011; see
also Cumming, 2008). A practical corollary
is that when a replication is attempted, a
large P-value can become small, and a small
P-value can become large (e.g. Amrhein
et al. 2019b)! This is illustrated formally in
Fig. 1 in which the wide prediction inter-
vals are clear even for studies in which the
P-value from the initial experiment is very
low (say <0.001). Further, these prediction
intervals are not influenced by the sample
or effect size, provided only that the sample
is not too small (Cumming, 2008).
For the third message, arguments from
Miller & Schwarz (2011) are cited by
Raiteri (2021) and used to paint an even
gloomier view about the difficulty of pre-
dicting replication P-values. They model
the research ‘world’ as more complex
than the simple one a physiologist may
encounter in an attempted exact replication
– not all parameters including factors
related to the research field, and the
individual experimenters, are known.
Thus, we can expect that P-values will
vary even more widely than in Fig. 1, and
perhaps even sufficiently to justify Miller
and Schwarz’s conclusion that ‘accurate
estimates of replication probability are
generally unattainable’.
Individual researchers will have to decide
whether to consider the reproducibility
of their results based on the massive
range of replication intervals (Fig. 1) and
the issues raised by Miller & Schwarz
(2011). Alternatively, they can use different
approaches: for example, the use of
confidence intervals and meta-analysis
from repeated experiments (Cumming &
Calin-Jageman, 2017). They can reinterpret
and re-express the observed P-values based
on the concept of a false discovery rate
(Colquhoun, 2014, 2017). Finally, they can
take some reassurance in the (rare) event
that should the initial study have a P-value
below 0.05 and this probability is achieved
in a replication, then the likelihood of a
‘true’ finding is substantially increased.
Our discussion indicates that, unless
P-values are extremely small, they give
very little or essentially no information
(Miller & Schwarz, 2011; Raiteri, 2021)
about what P-value a replication is likely
to obtain. More broadly, a P-value, as

a single number, cannot make salient
the degree of uncertainty in a result, for
example because it mixes information on
the size of the effect and how precisely
it was measured (Amrhein et al. 2017).
In contrast, the extent of a confidence
interval (CI), which some prefer to label
a compatibility interval (Amrhein et al.
2019a,b), makes that uncertainty salient: a
short CI gives reassurance, a long CI gives
a disappointing message that there is much
uncertainty in knowledge of the effect size
being investigated. On average, there is an
83% chance that a replication result (point
estimate) falls within a 95% CI (Cumming,
2014). Thus, the observed 95% CI provides
on average an 83% prediction interval for a
replication result, although we should not
forget the ‘dance of the confidence intervals’
(Cumming, 2014): this shows how a valid
interval will change from sample to sample
due to random variation (Amrhein et al.
2019a,b). But, in contrast to a P-value, a
CI directly uncovers a range of values that
replication estimates could take.
Scrutinizing results through replication
plus using other techniques and arguments
to reach conclusions is crucial to the
progress of physiology, indeed all science.
It should not be obstructed by the
misunderstanding and misuse of P-values
and other statistical measures.
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