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Giving less power to statistical power

Megan D. Higgs1 and Valentin Amrhein2

Abstract
Researchers often need to justify their choice of sample size, particularly in fields such as animal and clinical
research, where there are obvious ethical concerns about relying on too many or too few study subjects. The
common approach is still to depend on statistical power calculations, typically carried out using simple
formulas and default values. Over-reliance on power, however, not only carries the baggage of statistical
hypothesis tests that have been criticized for decades, but also blocks an opportunity to strengthen the
research in the design phase by learning about challenges in interpretation before the study is carried
out. We recommend constructing a ‘quantitative backdrop’ in the planning stage of a study, which means
explicitly connecting ranges of possible research outcomes to their expected real-life implications. Such a
backdrop can facilitate a priori considerations of how potential results, for example represented by intervals,
will ultimately be interpreted. It can also serve, in principle, to help select single values of interest for use in
traditional power analyses, or, better, inform sample size investigations based on the goal of achieving an
interval width narrow enough to distinguish values deemed practically or clinically important from those not
representing practically meaningful effects. The latter bases calculations on a desired precision, rather than
desired power. Sample size justification should not be seen as an automatic math exercise with a right
answer, but as a nuanced a priori investigation of measurement, design, analysis and interpretation chal-
lenges. Construction of the quantitative backdrop provides a tangible starting place for such an investigative
process.
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Study proposals, particularly for animal and clinical
research, typically require justification for a proposed
sample size based on statistical power calculations,
which are often carried out automatically under
defaults in web applets or statistical software. The
cost-benefit analysis of this effort to researchers need-
ing funding is easy, and following the usual procedure
typically requires little, if any, justification. In our view,
however, the foundations of statistical power deserve
less blind acceptance and more healthy interrogation
by researchers and reviewers.

We see research design as an underemphasized part
of the research process and support the expectation
that researchers meaningfully justify sample size
choices—particularly when there are ethical concerns,
such as in animal research. When taken as more than
default mathematical calculations, sample size investi-
gations can motivate deeper evaluation of plans for
study design, analysis and interpretation, and expose
limitations early enough to promote improvement

while taking advantage of the subject matter expertise
and creativity of researchers. Before we discuss an
alternative path, we visit some concepts we are implic-
itly trusting by relying on statistical power.

This short communication does not provide yet
another tutorial of sample size calculations meant to
return a clear-cut answer to the question of exactly how
many participants are needed per group; instead, it is
meant to spark more critical evaluation of measure-
ment, design, analysis and interpretation in the
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research design phase, before resources (including
animal lives) are used to carry out the study.

Before discussing power-related concepts, it is
important to acknowledge that the underlying concepts
are subtle and intricate, making it nearly impossible to
simplify them sufficiently for a broad audience without
losing technical correctness. This point actually under-
lies much of our criticism of power-based justifications
because users, and even teachers, are often not choos-
ing to rely on statistical power with adequate under-
standing or appreciation of the concepts involved. For
example, in the following, we are referring to ‘test
hypothesis’ rather than ‘null hypothesis,’ because the
tested hypothesis should not automatically amount to a
nil, zero or no-effect hypothesis.1 We can and should
also consider non-zero values, and we often do this
already because our traditional 95% confidence inter-
vals show all hypotheses (possible values for the true
effect size) that would result in a p-value greater than
0.05 when tested using the same data and background
model (Box 1).

Entering the hypothetical land of error
rates

Opening up the baggage of statistical power starts with
interrogating the concepts of type I and type II error
rates. Under a hypothesis-testing statistical framework,
errors are defined relative to a simple decision around
whether to reject the test hypothesis—it is either
rejected in error (‘reject when we should not’) or not
rejected in error (‘fail to reject when we should’). The
former is a type I error, the latter is a type II error, and
power is the rate of rejection of an incorrect test
hypothesis (‘rejecting when we should’), the non-error
compliment to a type II error. Power calculations are
based on long-run rates of these errors over hypothet-
ical study replications: type I error rate (a), type II
error rate (b) and power (1 – b).

Error rates (as opposed to single errors) are there-
fore conceptually based on a hypothetical collection of
many decisions, a proportion of which are errors. The
collection of decisions is hypothetical because the deci-
sions would arise from many study replications that in
real life are not conducted; thus error rates are hypo-
thetical—and these are the fundamental ingredients
underlying power calculations used to justify real-life
research decisions. While we appreciate the theoretical
attractiveness and mathematical convenience error
rates offer, we question handing them too much
authority. They seem to bring an air of objectivity
and comfort to an otherwise challenging and messy

Box 1. Different sorts of intervals and motivations for

their use

The ‘coverage’ rate definition of a 95% confidence
interval describes the procedure that generates
observed intervals that contain (‘cover’) the true
value 95% of the time—given all assumptions of the
procedure are met. Another way to think about it is
that 95% of the hypothetical confidence intervals con-
structed from theoretical data sets generated under
the procedure (which includes design, model and anal-
ysis) contain the true value; 5% of such intervals are
expected to be ‘errors’ in terms of excluding the true
value, given all assumptions are met.

Confidence intervals can be created by inverting
hypothesis tests: a 95% confidence interval includes
all values for the test hypothesis (all possible values
for the true effect size) that would result in p-values
larger than 0.05 and would thus not be ‘rejected’
according to a strict decision rule, given the data and
the statistical model with all background assumptions.
The interval can thus be taken as conveying the effect
sizes that are most compatible with the data and model
and can therefore be termed a compatibility
interval.5,15,16

Intervals matching classic confidence intervals can
arise more generally as quantiles or percentiles sum-
marizing the most common values of a distribution
without any need for referencing a true value or defin-
ing an error rate. This is the motivation for using pos-
terior intervals within Bayesian inference as summa-
rizing the region of a posterior distribution with largest
posterior density (typically the middle of a distribution).
In a non-Bayesian setting, intervals can be used to
summarize randomization distributions or sampling
distributions, again with no reliance on true or hypoth-
esized values or error rates. A 95% interval, for exam-
ple, typically provides the interval excluding values
beyond the 97.5 percentile and below the 2.5 percentile
that would be considered ‘rare’ according to the
chosen criterion.

We encourage this more general ‘summarizing a
distribution’ interpretation that helps relax interpreta-
tion of the endpoints from hard-boundary thresholds
to rather arbitrary and user-chosen summaries of a
distribution of interest. Displaying intervals as a col-
lection of segments representing different choices for
percentiles (e.g., 95% and 80%) facilitates this view
(Figure 1).

The goal is to have a more general interpretation of
intervals beyond error and coverage rates that allows
their (necessarily imperfect) use as a way to represent
the values most compatible with the data and the
model with all background assumptions in a way that
also honors context-dependent knowledge.
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research process; but their roots inhabit the same soil
as statistical hypothesis tests that have been criticized
for decades, for example for their rigid focus on often
poorly justified null hypotheses and decision rules.2–5

Problems arising back in reality

When we leave the hypothetical land of a having a
collection of data sets and associated decisions about
rejecting a test hypothesis, we inevitably face issues:
real-life error rates are unknown and difficult to fully
conceptualize—we usually do not have data from mul-
tiple study replications, and we never know whether the
decision about rejecting a hypothesis is in error for any
individual study. In addition, theoretical error rates are
only as trustworthy as the assumed model of the pro-
cess that generated the real-life data—and this statisti-
cal model is inherently based on assumptions about
reality that are usually violated in practice and uncer-
tain by definition (otherwise they would not be called
assumptions).

While similar cautions apply broadly for statistical
methods, in power-related practices we often see bla-
tant ignoring of the underlying model and its connec-
tion to theoretical error rates, leading to overconfident
expectations about reality and questionable study
design decisions. This is exemplified by misleading
statements such as ‘we will be wrong 5% of the time’
if we reject a test hypothesis based on a p-value thresh-
old of 0.05; this statement would only be true if the
statistical model and all its assumptions were correct—
but there are countless explicit and implicit assump-
tions that are part of a statistical model,6 so a statement
that uses the word ‘will’ is overconfident in almost all
cases. The same applies to ‘we will obtain a statistically
significant result in 80% of cases’ if power is 80%,
which is misleading for the same reasons stated
above. Further, power is not the ‘probability of obtain-
ing a statistically significant result,’ as is often stated; it
is this probability only if the true effect is exactly equal
to the alternative hypothesis used for power calculation
and if all other model assumptions are correct, which is
typically far from reality.

In general, power calculations beg a lot of trust in
unknowns and misunderstood concepts, and yet it is
common to treat resulting sample size numbers as if
they provide concrete and objective answers to
inform crucial research decisions, often ones with eth-
ical implications. We hope this glimpse into the bag-
gage associated with error rates, and thus power, will
spur some healthy skepticism; but motivating change
must also acknowledge the unfortunate reality that
incentives from peers, funding bodies and animal wel-
fare committees promote the comfortable status quo
(whether explicit or only assumed by the researchers)

instead of rewarding curiosity about limitations of cur-

rent methodological norms. Pushback against dichoto-

mous statistical hypothesis testing has gained traction

within analysis,4,5 but influence on use of power calcu-

lations has been limited, despite reliance on the same

criticized theory and practices.7 An over-focus on

simple statistical power also inadvertently encourages

ignoring more sophisticated design and analysis princi-

ples available to increase precision (and thus decrease,

for example, number of animals used), because calcu-

lating statistical power for more complicated designs

and analyses is often not straightforward or not imple-

mented in default statistical procedures.

An alternative definition of success tied to
research context

It is possible to let go of much of the baggage of error

rates by shifting away from defining a research ‘suc-

cess’ in terms of avoiding theoretical type I and type II

errors toward a context-dependent success that honors

inevitable gray area in interpretation instead of, for

example, forcing use of single values for null and alter-

native hypotheses. A successful study should result in

useful information about how compatible the data

(and background assumptions) are with values large

(or small) enough to be deemed practically important

(e.g., clinically relevant) as compared with values too

small (or large) to be considered practically important.

We can do what we can in the design phase to make

such a success possible, but of course there is no way to

avoid results potentially consistent with the gray area

between the two regions; this is not a problem, it simply

highlights the challenges in interpretation that exist in

real life but often are hidden behind use of default cri-

teria and assumptions in common methods.
For example, suppose the effect of a new anti-

hypertensive drug on average systolic blood pressure

has to be a reduction of at least 10 units to be

deemed clinically relevant, with a reduction of 6–10

units representing gray area (unclear clinical relevance),

and fewer than 6 units clearly not clinically meaningful

(though clearly not ‘no effect’). Then, a sample-size

related goal might be to achieve a precision such that

an interval is not wider than 4 units. That is, we aim for

obtaining an interval that cannot overlap both clinical-

ly relevant (values greater than 10) and not relevant

values (values under 6), which is only possible if an

interval is narrower than 4 units (Figure 1). Note that

such a successful research outcome can accompany

very large or very small p-values and thus is not defined

by ‘statistical significance.’
As alluded to in the example, one strategy for a

researcher to exert control over the width of a future
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interval (precision) is through choice of sample size;

more information and technical guidance on choosing

a sample size based on precision rather than power can

be found elsewhere.8–12 Although precision-based

approaches can be carried out in ways just as automatic

and default as traditional power-based approaches, the

focus on intervals invites use of context-dependent

knowledge and expertise related to the treatment and

proposed methods of measurement. In this spirit, we

offer a larger framework for incorporating research

context and interpretation of results a priori.13,14 The

framework allows for a priori considerations of how

different intervals will be interpreted in context, and

although it can be used to support precision-based

sample size investigations, it is not offered as simply

a sample-size calculation method.
A picture can help clarify alternative definitions of

success (Figure 1): intervals A and B clearly distinguish

between regions of different practical implications, and

both are considered study successes because all values

in A are deemed too small to be clinically relevant, and

nearly all values in B are large enough to be clinically

relevant. Interval C, on the other hand, is not considered

a success because it contains values in both regions, not

supporting a conclusion in either direction. Narrower

intervals (greater precision) help to avoid scenario C

and facilitate successes (A and B). Even with a narrow

interval, we can still land partially or fully in gray area

(D); while potentially frustrating, such is the reality of

doing research and D still provides valuable information

to inform future studies or meta-analyses.
As Figure 1 conveys, this approach requires initial

context-dependent work to draw the number line

‘backdrop’ delineating the regions. Assigning practical

or clinical importance to values a priori can be com-

pared with creating a backdrop in theatre produc-

tions—a picture hanging behind the action of a play

to provide meaningful context. In research, a ‘quanti-

tative backdrop’ provides a contextual basis in front of

which study design, analysis and interpretation of

results take place,14 ideally without over-reliance on

arbitrary default statistical criteria. While simple in

construction, the process is not trivial and can be sur-

prisingly challenging, partly because it is a novel exer-

cise for most researchers and statisticians.
While the backdrop framework can help support

and facilitate sample size investigations, it is broader

than that and need not involve sample size calculations

to be useful. For example, suppose researchers are

planning to use the largest sample size possible given

ethical, logistical or cost constraints and have done as

much work as possible to decrease background

Figure 1. Example of a ‘quantitative backdrop’ with hypothetical intervals that could arise after data collection and
analysis. The number-line backdrop is context-dependent and honors a realistic gray area in which clinical relevance is
unclear. The backdrop facilitates meaningful interpretation of potential study results and highlights the goal of designing
a study to provide an interval of values (those reasonably compatible with the data, given the model5) in either the blue or
green region, not both regions simultaneously. Intervals A and B would be successful in helping to distinguish between
effects too small to be clinically relevant and those large enough to be clinically relevant. Interval C, on the other hand,
would cover values in both regions, meaning the single study failed to distinguish between the two regions associated
with different conclusions. We can aim to avoid scenario C by trying to restrict the width of the interval enough so that it
cannot contain values on both sides of the gray area (smaller than 6 and greater than 10, for example). Note that even with
a desired width, an interval may end up covering the gray area (see D), which, while not a ‘success’ as defined, is valuable
information to inform future research and a reality of doing research that is often swept under the rug in commonly used
power-based methods where interpretations are treated as black-and-white decisions. Sample size is only one ingredient
affecting interval widths, and guidelines on justifying a sample size based on precision can be found elsewhere.8–12 Note
that the depicted intervals are actually collections of intervals to better summarize a distribution and can be defined by
sets of percentiles (e.g., 99%, 95%, 80%, 50%) deemed useful for the context.
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variance through design and analysis decisions. The
result of the planning exercise is an interval with an
approximate width that can be compared with the
quantitative backdrop to think about and articulate
how intervals will be interpreted as their location
moves relative to the backdrop. The exercise can help
make decisions about whether the research is worth
carrying out given the width of an interval that can
possibly be achieved and can serve justification of
interpretations after data collection and analysis if the
a priori interpretations are appropriately documented
(e.g., pre-registered).

Loosening our grip on interval endpoints

Our use of the term ‘interval’ thus far has been pur-
posefully vague, as our definition of success does not
depend on any particular method for obtaining inter-
vals (e.g., confidence, credible, or posterior intervals),
only that the researcher sufficiently trusts the interval
and can justify its use to others (Box 1). We promote
relaxing long-held views of what a statistical interval
does, or should, represent and see interpreting confidence
or credible intervals as compatibility intervals as a step in
this direction.1,5,6,15,16 Compatibility encourages a shift
from dichotomously phrased research questions (e.g., ‘is
there a treatment effect?’) to the more meaningful ‘what
values for a treatment effect are most compatible with the
obtained data and the model with all background
assumptions?’ (to which the answer would be the values
included in the obtained interval).16

We can also relax the rigidity with which interval
endpoints are interpreted. When drawing an interval,
the line must have ends, but values beyond the end-
points do not suddenly switch from being compatible
with the data and assumptions, to incompatible. Values
inside the interval are just considered more compatible,
and values outside are less compatible,5 and that applies
whether we have a 95% or 80% or any other interval.
Loosening our grip on the rigidity of endpoints can
facilitate another shift from believing we are calculating
the one and only sample size answer to undertaking an
investigation that honors limitations and challenges.
The technique of using a collection of different quan-
tiles to display the intervals as in Figure 1 can help with
this challenge.

The reality is that to carry out a sample size calcu-
lation based on precision (via math or computer simu-
lation), we must input a specific interval width. This
may at first seem inconsistent with the recommenda-
tion to relax interpretations of intervals and rigidity of
endpoints. However, there is no conflict if we also relax
our belief that there is a single correct answer to the
sample size question and instead use the exercise to
motivate a nuanced investigation to help understand

challenges inherent in carrying out the study. This can
include many calculations to reflect different levels of
precision and varying sensitivity to assumptions.

As mentioned previously, precision-based methods
can be used easily to carry out a typical power calcu-
lation in disguise, rather than the more holistic
approach we are promoting. Several practices can
help avoid using them as power calculations in disguise:
(1) avoid using confidence intervals to carry out hypoth-
esis tests by simply checking whether they contain a
hypothesized value (usually the null hypothesis of no
effect); (2) embrace the a priori work of developing the
context-specific backdrop identifying the range of values
to be considered practically, or clinically, relevant, as well
as the gray area between; (3) create the backdrop using a
scale that facilitates practical interpretation within con-
text (e.g., not standardized effect sizes) and (4) contrary to
common advice, do not simply use a previously obtained
estimate to define the ranges of values in the backdrop
(e.g., the 6 or the 10 in Figure 1).

The last point deserves further attention. It is
common to use previous effect estimates (such as
pilot study results) as the ‘(practically meaningful)
alternative value’ in traditional power calculations,
although this is not necessary or recommended. The
practice has negative implications for sample size jus-
tification,11 for example, because published effect esti-
mates are often exaggerated.17 Such practice can lead
to sample sizes that are smaller than needed (if the
previous estimate is larger than the smallest values
deemed practically relevant) or larger than needed (if
the previous estimate is smaller than what is deemed
practically relevant). There is no reason a previous esti-
mate should automatically be judged practically rele-
vant—it can fall anywhere relative to the backdrop and
should not change the a priori developed backdrop!
Note, however, that previously obtained estimates of
background variance (e.g., the width of previous inter-
vals) are valuable for design decisions and sample size
investigations.

Creating a quantitative backdrop is not an exercise
in guessing the actual effect, but an exercise in explicitly
defining and sharing the context within which an esti-
mated effect will be interpreted. This can be confusing
because it is counter to what is often taught and
expected from funding agencies. Relative to the previ-
ous example, a pilot study may have produced an esti-
mated reduction of three units, which, when considered
relative to the backdrop, is not clinically relevant and
therefore there is no reason to justify increasing the
sample size to attempt to estimate an effect as small
as three units with sufficient precision. The decision
of what values will be judged practically relevant
should thus be made based on knowledge of the subject
matter (e.g., medical) and of the measurement scale,
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not on previous estimates of an effect of interest.
Defining relevant values can, and should, be carried
out before any pilot study, facilitating the exercise of
specifying how potential pilot study results will be used
for further planning.

Taking back the power shouldn’t be easy

A common question when considering this framework
is: what if researchers do not have enough knowledge
of how the outcome variable’s measurement scale is
connected to practical implications to create the quan-
titative backdrop? That is, what if they are not able to
identify values that would be considered large, or small,
relative to practical implications? If this is the case,
then we argue researchers should honestly declare
that, with the currently available knowledge, it is
impossible to come up with a justifiable sample size.
In such a situation, using default power calculations
will essentially just move the research challenge into
the analysis and interpretation phase, after already
using valuable resources for the experiment—if practi-
cal implications of possible outcomes are unclear
before the experiment, they are usually still unclear
after results are in. Instead, an inability to identify
practical implications of possible outcomes in the plan-
ning stage of a study would highlight the exploratory
nature of the research and a need for better under-
standing of the outcome variable, which could be a
valuable research goal by itself.

Engaging in a sample size investigation as we are
recommending will not feel easy. Investigating sample
sizes, rather than calculating them using default power
analysis settings will bring up hard questions, throw
light on assumptions that were previously hidden,
and create additional problems to address. We need
constant reminders that statistical methods depend on
a substantial set of background assumptions; and
methods for justifying sample sizes are no exception.

Sample size investigation presents an opportunity
for researchers to give up simple math calculations in
exchange for taking back some of the authority and
creativity blindly given over to statistical power for dec-
ades. We have a responsibility as scientists to work to
understand and interrogate our chosen scientific meth-
odologies to the best of our ability to avoid being fooled
by our own assumptions. Embracing this challenge in
the design phase of a study can lead to higher quality
research, and ultimately to more efficient research
spending and respect for human and animal lives.
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Donner moins de puissance à la puissance statistique
R�esum�e

Les chercheurs doivent souvent justifier leur choix de taille d’�echantillon, en particulier dans des domaines
tels que la recherche animale et clinique, o�u il existe des pr�eoccupations �ethiques �evidentes quant au fait de
s’appuyer sur trop ou trop peu de sujets d’�etude. L’approche commune reste à d�ependre des calculs de
puissance statistiques, g�en�eralement effectu�es à l’aide de formules simples et de valeurs par d�efaut. La
d�ependance excessive à l’�egard de la puissance non seulement entraı̂ne le fardeau des tests d’hypoth�eses
statistiques qui ont �et�e critiqu�es pendant des d�ecennies, mais empêche �egalement de renforcer la recherche
dans la phase de conception en apprenant les d�efis d’interpr�etation avant que l’�etude ne soit men�ee à bien.
Nous recommandons de construire une « toile de fond quantitative » au stade de la planification d’une �etude
impliquant de relier explicitement les gammes de r�esultats de recherche possibles à leurs implications
r�eelles attendues. Une telle toile de fond peut faciliter la prise en compte a priori de la mani�ere dont les
r�esultats potentiels, repr�esent�es par exemple par des intervalles, seront finalement interpr�et�es. Elle peut
�egalement aider, en principe, à s�electionner des valeurs uniques d’int�erêt à utiliser dans les analyses de
puissance traditionnelles, ou mieux, à informer le choix de tailles d’�echantillon des investigations en fonction
de l’objectif d’atteindre une largeur d’intervalle suffisamment �etroite pour distinguer les valeurs jug�ees
pratiquement ou cliniquement importantes de celles qui ne repr�esentent pas des effets pratiquement sig-
nificatifs. Ce dernier base les calculs sur une pr�ecision souhait�ee, plutôt que sur la puissance souhait�ee. La
justification de la taille de l’�echantillon ne devrait pas être consid�er�ee comme un exercice de math�ematiques
standard n’ayant qu’une bonne r�eponse, mais comme une enquête a priori nuanc�ee sur les d�efis de mesure,
de conception, d’analyse et d’interpr�etation. La construction de la toile de fond quantitative fournit un point de
d�epart tangible pour un tel processus d’investigation.

Weniger Power für statistische Power
Abstract

Forscher müssen h€aufig ihre Wahl des Stichprobenumfangs begründen, insbesondere in Bereichen wie der
Tierforschung und der klinischen Forschung, wo es offenkundige ethische Bedenken mit Blick auf zu viele
oder zu wenige Versuchssubjekte gibt. Es herrscht nach wie vor der übliche Ansatz vor, sich auf statistische
Powerberechnungen zu verlassen, die in der Regel mit einfachen Formeln und Standardwerten durchgeführt
werden. Ein allzu starkes Vertrauen in statistische Power bringt jedoch nicht nur den Ballast seit
Jahrzehnten kritisierter statistischer Hypothesentests mit sich, sondern versperrt auch die M€oglichkeit,
die Forschung in der Planungsphase zu st€arken, indem man sich vor der Durchführung einer Studie über
die Herausforderungen bei der Interpretation informiert. Wir empfehlen, in der Planungsphase einer Studie
einen ,,quantitativen Hintergrund“ zu schaffen, d. h. die Bandbreite m€oglicher Forschungsergebnisse explizit
mit den erwarteten Auswirkungen auf das reale Leben zu verknüpfen. Ein solcher Hintergrund kann A-priori-
€Uberlegungen dahingehend f€ordern, wie potenzielle Ergebnisse, die z. B. durch Intervalle dargestellt werden,
letztlich interpretiert werden sollen. Er kann im Prinzip auch dazu dienen, einzelne Werte von Interesse für
die Verwendung in traditionellen Poweranalysen auszuw€ahlen – oder besser noch, Untersuchungen zum
Stichprobenumfang auf der Grundlage des Ziels zu informieren, eine Intervallbreite zu erreichen, die eng
genug ist, um Werte, die als praktisch oder klinisch wichtig erachtet werden, von solchen zu unterscheiden,
die keine praktisch bedeutsamen Auswirkungen darstellen. Bei letzterem werden die Berechnungen auf der
Grundlage einer gewünschten Pr€azision und nicht auf der Grundlage der gewünschten Power durchgeführt.
Die Rechtfertigung des Stichprobenumfangs sollte nicht als automatische Rechenübung mit einer richtigen
Antwort betrachtet werden, sondern als eine nuancierte A-priori-Untersuchung der Herausforderungen bei
Messung, Design, Analyse und Interpretation. Die Konstruktion des quantitativen Hintergrunds bietet einen
konkreten Ausgangspunkt für einen solchen Untersuchungsprozess.
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Dar menos poder al poder estad�ıstico
Resumen

Los investigadores a menudo necesitan justificar su elecci�on del tama~no de la muestra, especialmente en
campos como la investigaci�on animal y cl�ınica, donde existen preocupaciones �eticas evidentes sobre
depender de un n�umero excesivo o insuficiente de sujetos de estudio. El enfoque habitual sigue siendo
depender de los cálculos estad�ısticos de potencia, realizados normalmente mediante f�ormulas sencillas y
valores por defecto. No obstante, confiar demasiado en la potencia no solo conlleva el bagaje de las pruebas
estad�ısticas de hip�otesis que han sido criticadas durante d�ecadas, sino que tambi�en bloquea una oportunidad
de fortalecer la investigaci�on en la fase de dise~no aprendiendo sobre los retos de la interpretaci�on antes de
que se lleve a cabo el estudio. Recomendamos construir un «marco cuantitativo» en la fase de planificaci�on
de un estudio, lo que significa conectar expl�ıcitamente gamas de posibles resultados de la investigaci�on con
sus implicaciones previstas en la vida real. Este marco puede facilitar las consideraciones a priori sobre
c�omo se interpretarán en �ultima instancia los resultados potenciales, por ejemplo representados por inter-
valos. Tambi�en puede, en teor�ıa, ayudar a seleccionar valores individuales de inter�es para su uso en análisis
de potencia tradicionales; o mejor a�un, guiar las investigaciones sobre el tama~no de la muestra basadas en el
objetivo de lograr un ancho de intervalo lo suficientemente estrecho como para distinguir los valores que se
consideran importantes desde el punto de vista práctico o cl�ınico de aquellos que no representan efectos
significativos desde el punto de vista práctico. Este �ultimo basa los cálculos en una precisi�on deseada, en
lugar de la potencia deseada. La justificaci�on del tama~no de la muestra no debe verse como un ejercicio
matemático automático con una respuesta correcta, sino como una investigaci�on matizada a priori de los
retos de medici�on, dise~no, análisis e interpretaci�on. La construcci�on del tel�on de fondo cuantitativo propor-
ciona un punto de partida tangible para dicho proceso de investigaci�on.
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