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This article is a tutorial for the R-package carcass. It starts with a short overview of common methods used to estimate 
mortality based on carcass searches. Then, it guides step by step through a simple example. First, the proportion of animals 
that fall into the search area is estimated. Second, carcass persistence time is estimated based on experimental data. Third, 
searcher efficiency is estimated. Fourth, these three estimated parameters are combined to obtain the probability that an 
animal killed is found by an observer. Finally, this probability is used together with the observed number of carcasses found 
to obtain an estimate for the total number of killed animals together with a credible interval.

What is carcass used for?

Collisions of bats and birds with man-made structures such as 
large buildings, towers, wind turbines or traffic are of ecologi-
cal concern (Schaub and Lebreton 2004, Kunz et al. 2007). 
To assess mortality rates, systematic searches for carcasses are 
often performed. The number of carcasses found, however, 
largely underestimates mortality because only a subset of the 
animals killed fall into an area that is searched (the ‘search area’). 
Furthermore, many carcasses may be removed by scavengers 
before the searches. Finally, of the dead animals that have not 
been removed by scavengers some may remain undetected 
because the probability of finding a carcass during a search usu-
ally is less than one. In order to obtain unbiased estimates of 
mortality from systematic carcass searches the following three 
parameters must be measured or estimated: 1) proportion  
of animals killed that fall into the search area a, 2) carcass 
persistence probability s, and 3) searcher efficiency f. The pro-
portion of animals killed that fall into the search area a can 
be obtained from the spatial distribution of the search area in 
relation to the spatial distribution of the carcasses. The spa-
tial distribution of the carcasses mainly depends on the type 
of obstacle they collide with. The package carcass includes 
a table with empirical and theoretical distributions of bat 
carcasses beneath wind turbines of different sizes. However, 
the spatial distribution of the carcasses is likely to depend on 
further parameters, e.g. the wind speed , mass of the animal 
and direction.

Some studies are designed in such a way that carcass 
persistence probability s and searcher efficiency f can be 
estimated from the carcass search data alone using mark– 
recapture models (Lebreton et al. 1992), see examples in 
Guinard et al. (2012) or Péron et al. (2013). The package 
carcass, however, is designed for studies where carcass persis-
tence probability and searcher efficiency are estimated based 
on additional experiments, such as laying out trial carcasses 
to monitor their removal over time or to test naive observers. 
For such data, carcass may be used to estimate persistence 
probability and searcher efficiency, to subsequently combine 
these parameters into an estimate of the probability that an 
animal that has died during the study period is found by the 
observer p, and to finally estimate the mortality N given p 
and the number of carcasses found c.

The function persistence.prob estimates site-
specific persistence probabilities based on experimental data. 
The function search.efficiency estimates the prob-
ability that a carcass that persisted is found by an observer. 
These two functions are wrappers of standard statistical 
methods. They are written for people with little experience 
in applying statistical models. However, before the functions 
are applied, please make sure that the data meet the model 
assumptions described below.

Estimates for carcass persistence probability and for 
searcher efficiency can be combined taking into account 
the design of the searches (how often and at what intervals 
the searches have been performed) to get an estimate of the 
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probability that a carcass that has fallen into the search area 
will be found. This has been done in different ways by dif-
ferent authors (Erickson et al. 2004, Shoenfeld 2004, Kerns 
et al. 2005, Jain et al. 2007, Pollock 2007, Huso 2010, 
Korner-Nievergelt et al. 2011, Etterson 2013, Péron and 
Hines 2014). The R-package carcass provides the methods 
presented by Korner-Nievergelt et al. (2011) and general-
izations of these methods (Etterson 2013) that allow relax-
ing some of the assumptions made by the original method 
and Eq. 14 from Etterson (2013). Carcass also includes the 
method of Huso (2010). We do not give the theoretical 
background and do not test these methods via simulations 
here because this has been done in the specific studies.

There is no standard method that can be used in every 
case. Whether a method produces biased estimates or not 
depends on how well the data meet the implicit assump-
tions of the method chosen. Data sets can differ in a variety 
of aspects, such as number of carcasses found, length and 
regularity of search intervals, carcass persistence probabil-
ity and its variability over time, searcher efficiency and its 
variability over time, design of the experiments to assess 
searcher efficiency and persistence probability, topography, 
spatial distribution of carcasses in relation to the search area 
etc. Such differences in methodology and experimental con-
ditions induce that a statistical method that performs well 
in one study may produce a serious bias in another. Carcass 
is a collection of tools that help to individually design the 
analyses of carcass search data. To help to pick the most 
appropriate tools, we expanded the overview over the cur-
rently used methods from the review of Bernardino et al. 
(2013) and give some guidelines for when to choose which 
method below.

In addition to methods for the estimation of the detec-
tion probability p (that a killed animal is eventually found), 
carcass also provides functions to estimate the number of 
animals that have died (N) given an estimate for p and the 
number of carcasses found c. To do so, we use Bayes’ theo-
rem.  Carcass provides two functions for the estimation of N: 
1) posteriorN calculates the posterior distribution of the 
number of fatalities given a detection probability estimate 
without taking into account the precision of the estimated 
detection probability. 2) estimateN does the same as 
posteriorN but accounts for uncertainty of the estimate 
of detection probability, using Monte Carlo simulations.

The methods provided by carcass allow users to estimate 
the total number of animals that have died, that is, summed 
over a specific (long) time span or spatial range assuming 
that mortality rate is constant. This is because the estimation 
of mortality based on a low number of carcasses, e.g. zero 
or one, is associated with very high stochastic uncertainty 
(see Discussion). Therefore, if more detailed estimates for the 
mortality rate are needed, e.g. daily or weekly mortality rates 
for single sites rather than the total number of animals killed 
over a long time period, we either have to collect the carcasses 
using a mark-recapture study design (Péron et al. 2013), or 
we could include additional information about the num-
ber of animals exposed to the hazard and use model based 
approaches as has been done by Bellebaum et al. (2013) and 
Korner-Nievergelt et al. (2013). The R-package fatalityCMR 
(Péron and Hines 2014) provides a model based approach to 
obtain mortality estimates.

To work with carcass basic knowledge of the R-language is 
required. If you are unfamiliar with the R-language, you may 
check out the internet tools www.kollisionsopfersuche.uni-
hannover.de  (in German; requires that the study design 
exactly follows Niermann et al. 2011), or www.bio3.pt/
en/services-and-projects/wildlife-fatality-estimator , or the 
software provided by the USGS (Huso et al. 2012, Dalthorp 
et al. 2014).

How is carcass used?

Principal process
The following steps are necessary to estimate the number of 
fatalities from carcass searches.

Estimate the proportion of killed or injured animals that 1) 
fall into the search area (a).
Estimate carcass persistence probability (2) s), if necessary 
for different ages of the carcass and different vegetation 
classes.
Estimate the probability that a carcass is found by an 3) 
observer given it persists in the search area to the time 
of a search (searcher efficiency f   ), if necessary dependent 
on vegetation classes and dependent on the number of 
searches a carcass has already been exposed to.
Combine the parameters 4) a, s and f with the search inter-
val (d) or search schedule (J) to get the probability that 
an animal that has died is found (detection probability 
p  f(a,s,f,d)).
Estimate the number of animals that have died 5) N from 
the number of carcasses found (c) and the estimate for 
detection probability (p).

Load the package

Proportion of killed or injured animals that fall into the 
search area
The proportion of killed or injured animals that fall into the 
search area (and do not move away) is determined by the size 
and distribution of the area that can be searched, the spatial 
distribution of the carcasses, and the proportion of injured 
animals that move away from the study area before they die. 
If you can assume that all animals that have been killed have 
fallen into the area that has been searched (and that no addi-
tional carcasses dead from another cause lay in the search 
area), you can skip this chapter and use a  1 later. However, 
often only parts of the area where carcasses fall into can be 
searched due to inaccessibility, time and funding constraints, 
or because of dangers such as traffic. In many studies, the 
proportion of carcasses that have fallen into the search area 
is far lower than the proportion of carcasses removed by 
scavengers prior to the search or the proportion of carcasses 
overlooked by an observer (Warren-Hicks et al. 2013, Huso 
and Dalthorp 2014). Therefore, a is often among the most 
important parameters in terms of its influence on the result-
ing estimate of numbers of animals killed.

To obtain a the spatial distribution of carcasses has to be 
combined with the spatial distribution of the search area. 
In many studies, carcass density decreases with distance to 
the obstacle (the cause of the hazard). Carcass density may, 
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therefore, be approximated by a function of distance from 
the obstacle. The density function of distance to the obstacle 
can be different in different directions depending on the 
shape of the obstacle, its height, prevailing wind directions 
and other factors. Carcass does not provide a general method 
that allows estimating a. Here, we only present an example 
of bat collisions at wind turbines to illustrate the principle 
of calculating a using information about the spatial distribu-
tion of carcasses from literature.

The data frame batdist contains examples of empirical 
and theoretical carcass distributions of bats at wind turbines 
(Table 1). The expected proportions of bats in each 10 m 
distance ring are given. Hull and Muir (2010) use a ballistic 
model to describe the spatial distribution below three dif-
ferent sizes of wind turbines for different carcass types and 
sizes, but the model does not seem to fit empirical data 
well (Arnett et al. 2005, Niermann et al. 2011, Huso and  
Dalthorp 2014). In addition, variation among sites and years 
may be substantial (Table 1). An empirical estimate of carcass 
distribution may be preferred (Dalthorp and Huso 2013).

To obtain the proportion of killed or injured animals that 
fall into the search area (a), we can, e.g. multiply the propor-
tion that was searched in each of the 10 m distance rings 
with the proportion of carcasses found in the corresponding 
ring and sum over all rings. As an example, we use the bat 
distribution averaged over the first three studies in batdist 
and multiply these proportions with the proportions of the 
search area per ring. The latter proportions may be obtained 
using a geographic information system (GIS). When sites 
are heterogeneous regarding visibility class, it is preferable  
to use the proportions of carcasses falling into the different 
sub-units (e.g. distance rings) as weights when averaging 
detection probability p or any other parameter, such as f or s, 
over the whole site.

If the study species may move away from the wind turbine 
after collision, but before dying, we have to multiply the 
proportion of carcasses lying in the search area (obtained as 
described above) by 1 minus the proportion of animals that 
move out of the search area. For red kites Milvus milvus the 

Table 1. Estimated spatial distribution of bat carcasses below wind turbines in different studies (1  Niermann et al. 2011, 2a,b  Arnett et al. 
2005, 3  Hull and Muir 2010). Rotor  rotor diameter in m, Nacelle  nacelle height in m.

Study Rotor Nacelle 0–10m 10–20m 20–30m 30–40m 40–50m  50m

1 70 98 0.21 0.39 0.27 0.11 0.02 0.00
2a 72 80 0.10 0.26 0.28 0.26 0.07 0.03
2b 72 80 0.04 0.19 0.28 0.31 0.14 0.04
3 66 65 0.30 0.26 0.20 0.15 0.07 0.02
3 90 80 0.24 0.23 0.19 0.15 0.12 0.07
3 110 94 0.21 0.20 0.18 0.15 0.12 0.14

proportion of individuals that move away from the turbine 
after collision may be up to 15 % (Bellebaum et al. 2013). 
We are not aware of estimates for other taxa.

Carcass persistence time
Carcass persistence time is the duration a carcass stays on the 
ground before it is removed by scavengers or before it has 
decomposed (to a state that makes it essentially undetectable 
by the observers). Carcass persistence time depends primar-
ily on the density and activity of scavengers, temperature and 
humidity. Thus, persistence time likely varies between sites. 
carcass allows the estimation of carcass persistence probabili-
ties for multiple study sites simultaneously.

To estimate carcass persistence time, individual carcasses 
have to be monitored over time to record the time until  
they disappear. Such time-to-event data are commonly anal-
ysed using survival models to estimate (daily) persistence 
probability.

Survival models differ in their assumption about how 
removal probability changes over time. Several studies found 
that persistence probability of carcasses increases over time, 
that is, fresh carcasses are removed with a higher probability 
than old carcasses (Van Pelt and Piatt 1995, Erickson et al. 
2004, Ward et al. 2006, Warren-Hicks et al. 2013). Bispo 
et al. (2013) explore the fit of different parametric survival 
models to carcass removal data.

At present, two different models to estimate carcass  
persistence time are implemented in carcass:

the exponential model that assumes constant persistence 1) 
probability over time,
the Cox proportional hazard model that allows for  2) 
a changing persistence probability over time without 
making any assumption about the shape of the change.

But other survival models may be preferred (Bispo et al. 
2013). From any survival analyses, either daily persistence 
probabilities or the proportion of carcasses that persist until 
every day after death (‘survivor function’) can later be used 
to estimate carcass detection probability.

Here, we first estimate daily carcass persistence probabil-
ity s assuming a constant persistence probability. Second, we 
estimate separate daily persistence probabilities for each day 
after death. For both analyses, we will use the data set ‘per-
sistence’. It contains persistence times in days for 636 brown 
mice and a few bat carcasses from 30 wind turbines. For each 
carcass, we know the persistence time in days (variable ‘per-
stime’) if the variable ‘status’ is 1, or we know the minimal  
persistence time if ‘status’ is 0 for carcasses that have not  
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disappeared until the last search (i.e. right-censored scaveng-
ing events). For example, the first brown mouse tested at 
turbine 5 (see first line in example data) was present at day 
1 and day 2 after its placement (at day 0) but disappeared 
between day 2 and 3, i.e. the disappearance was observed (sta-
tus  1) at day 3. Another mouse, on line 7, persisted until 
the last control on day 14. Therefore, its persistence time is 14 
and the status is 0 (‘disappearance not observed’). Note that 
the persistence times are not known exactly because a scavenging 
event can hardly be observed directly, but it can be recorded that 
the carcass has disappeared between the last and present control. 
The models presently implemented in carcass assume that sta-
tus  1 means that the disappearance is exactly known. There-
fore, when the time between two controls is large, other methods 
(e.g. allowing for interval-censoring) may be preferred.

When we assume a constant persistence probability, we fit 
an exponential survival model persistence.prob and 
obtain one estimate for persistence probability per turbine 
(or site). The argument pers.const  TRUE is used to tell R 
that we assume a constant persistence probability.

The function returns a data frame with one row per site, the 
estimated daily persistence probability with the lower and 
upper limit of the 95% confidence interval, as well as the 
mean persistence time in days.

When we cannot assume a constant persistence probabil-
ity, we may use the Cox proportional hazard model by set-
ting the argument pers.const  FALSE (i.e. the default).

In this case, the function returns a list with four elements. 
The first element (‘time’) contains the time points for which 
the Cox-regression has estimated the proportion of remain-
ing carcasses. Each of the other three elements is a matrix 
where rows correspond to time (one row for each time point 
given in the ‘time’ element) and columns correspond to sites. 
The values are the estimates, the lower and the upper limits 
of the 95% confidence intervals for the probability that a 
carcass persists up to the time of the corresponding row.

Both models fit reasonably well to the data (Fig. 1), and 
the difference between the two models is small (obviously, 
this may not always be the case).

When data from several sites are available, the Cox  
proportional hazard model estimates the shape of the  
disappearance probability over time (hazard function) based 
on the pooled data set, that is, by assuming that the pro-
portions of disappearance probabilities (  1  persistence 
probability) between the different sites is constant over time. 
Therefore, the results differ depending on whether separate 
analyses for each site or one analysis including all sites are 
done. If data for only one site is available the result from 
the Cox proportional hazard model equals the data (Kaplan– 
Meier curves in Fig. 1). Such a result may be reliable only if 
sample size is very large. Therefore, if data for only one site is 
available, or sample size is small, we recommend a paramet-
ric model such as an exponential or a Weibull model. The 
latter is not yet implemented in carcass. Santos et al. (2011) 
list carcass persistence times for different taxonomic groups. 
However, be aware that persistence time can strongly vary 
between locations and date.

The persistence probabilities estimated above are prob-
abilities that a carcass persists for a given time interval, e.g. 
24 hours. However, to estimate carcass detection probability, 
the relevant parameter is the proportion of persisting car-
casses from all carcasses that arrived during a specific time 
interval. Thus, the estimates above can be used only if all 
carcasses arrive at the beginning of each time interval. Such 
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Figure 1. Proportion of persisting carcasses over time at nine different wind turbines (nr. 11 – 19). Black  data (Kaplan–Meier curve) with 
95% confidence interval (dotted lines), dark grey  estimate from exponential model assuming constant persistence probability, light 
grey  estimate from Cox proportional hazard model allowing for a time dependent persistence probability.

an assumption may be realistic for bat carcasses since often 
the majority of the bat carcasses arrive in the hour after sun-
set (Niermann et al. 2014). However, in other situations, 
carcasses may arrive continuously. If we assume a constant 
arrival rate, the persistence probabilities can be integrated 
over the last time interval to obtain the proportion of  
carcasses persisting until the end of the time interval.

Note that this integration is done automatically in the function 
estimateN when the argument ‘arrival’ is set to ‘uniform’.

Searcher efficiency
Searcher efficiency is the probability that an observer finds 
a carcass that is in the search area at the time of the search. 

Searcher efficiency depends on experience of the observer, 
characteristics of the ground (particularly vegetation density 
influencing visibility), and type of object that is searched for. 
Furthermore, the average searcher efficiency often decreases 
with the number of searches the objects have been exposed 
to, because decaying carcasses are harder to find and because 
highly detectable objects will be found earlier than hidden 

objects. For example objects that have fallen into a hole will 
remain longer on the search area (Huso 2010).

Usually, experimental trials are performed to assess 
searcher efficiency. In such trials, carcasses or carcass-like 
objects are distributed by a second person and the observer 
whose efficiency is being estimated must search for them. 
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Such trials yield data similar to the data in the data frame 
searches:

The example data was collected by Niermann et al. (2011). 
It contains the number of detected and undetected items for 
each of nine observers (variable ‘person’) and three visibility 
classes of the ground. The function search.efficiency 
estimates searcher efficiency f for each person and visibil-
ity class, as well as for each visibility class averaged over all 
persons. The average may be useful, if trial data on searcher 
efficiency are missing for some persons in the study. The 
function search.efficiency uses the function glmer 
from the package lme4 (Bates 2005) to fit a generalized linear 
mixed model with binomial error distribution and logit link 
function to model the number of detected and not detected 
items. From this model the fitted values (search efficiency) 
are extracted for each person and visibility class as well as for 
every visibility class averaged over all the persons. Visibility 
is used as a fixed effect and person as a random effect. When 
the data are limited to only one or two observers, observer is 
also treated as a fixed effect, and a generalised linear model is 
fitted by the function glm from the stats-package. Treating 
person as a random factor in the model has the advantage 
that for persons with a low number of experimental data 
(i.e. with weak information about their searcher efficiency) 
the estimate is shrunk towards the overall mean. In this way 
we avoid large over- or underestimation of person-specific 
searcher efficiencies that are due to the stochasticity of the 
experimental data (Gelman and Pardoe 2006).

To estimate searcher efficiency using search.effi-
ciency one must provide the data (i.e. observer id, visibil-
ity for each trial, number of detected and not detected items) 
either bundled in a data frame or as separate vectors. If the 
function is applied to a data frame, this data frame must 
contain the following four variables with the exact names: 
‘person’, ‘visibility’, ‘detected’, ‘notdetected’ (spelling and 
capitalization is important!). If data for only one visibility 
class is available (or visibility class has not been recorded), 
the variable ‘visibility’ has to contain the same value on each 
line. The function allows two (and only two) categorical 
explanatory variables (visibility class and observer id), thus 
it is not possible to include other explanatory variables or 
covariates.

The precision of the estimated search efficiency f is 
obtained using Bayesian methods, because these methods 
are more reliable in generalised linear mixed models than 
frequentist methods (Bolker et al. 2009). The function sim 
from the package arm is used to sample from the joint poste-

rior distribution of the model parameters (Gelman and Hill 
2007). The 2.5% and 97.5% quantiles of the random draws 
from the posterior distributions are used as lower and upper 
limits of the 95% credible intervals. The number of ran-
dom draws can be specified in the argument nsim. Default 
is 1000, but higher numbers are recommended for reliable 
credible intervals.

The models used by search.efficiency assume 
that the number of detected items is binomially distrib-
uted within each observer and visibility class. If the data are 
aggregated so that there is one row for each combination of 
observer and visibility class and visibility class has the same 
effect on searcher efficiency for each observer (no interac-
tion between observer and visibility class), there is little dan-
ger of violating this assumption. However, if the observers 
have been tested in different trials so that there are two or 
more rows per observer and visibility class, the variance in 
the data may be higher than assumed by the binomial model 
(overdispersion). If overdispersion is likely to be present, the 
models have to be fitted ‘by hand’ using the functions glm 
or glmer and checked for overdispersion as, e.g. described 
in Gelman and Hill (2007).

In real data, different sub-units (areas) will have differ-
ent visibility classes with different corresponding searcher 
efficiencies and, often, also different persistence probabilities 
(Warren-Hicks et al. 2013). In such cases, it may be best 
to calculate the detection probability p k for every sub-unit 
(1,...,K) separately. The weighted average of the detection 
probabilities p k with weights equal to the proportion of 
carcasses falling into the different sub-units (ak) can serve 
as an overall detection probability p. Dalthorp et al. (2014) 
explain how to calculate the variance for this weighted aver-
age. For simplicity, we here assume that only one visibility 
class was present.

Combining the proportion of carcasses in the search area a, 
persistence probability s and searcher efficiency f to get the 
detection probability p
The probability that an animal that has died is eventually 
found by an observer (p) is related to the proportion of car-
casses that have fallen into the search area (a), the persistence 
time (s) and the searcher efficiency (f). These three parameters 
have been combined in various different ways to get p. Table 2 
gives an overview over the commonly used methods.

First, some methods assume that the searches have been 
done regularly (constant search interval). If the searches have 
been done at irregular time intervals, an average search interval 
can be used. However, if the search interval is large compared 
to the carcass persistence time, mortality will be underesti-
mated because during longer than average search intervals 
some carcasses will disappear without having the chance of 
being detected during any search. In such cases, it is prudent to 
use a method that allows for irregular search intervals.

Second, many studies on carcasses found that fresh car-
casses are removed by scavengers with higher probability 
than old carcasses (Van Pelt and Piatt 1995, Ward et al. 
2006, Bispo et al. 2013, Warren-Hicks et al. 2013). There-
fore, it is better to use methods that allow for age-dependent 
persistence probabilities, if sample size is sufficient to estimate 
age-dependent persistence probabilities. It may not be impor-
tant to account for changing persistence times with carcass  
age when search intervals are short compared to persistence 
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times and searcher efficiency is high. In some studies change 
in persistence time with calendar date may be more impor-
tant than with carcass age, e.g. when temperature or humidity 
substantially changed or scavengers arrived. Then the formula 
developed by Etterson (2013) will be a good choice.

Third, some methods do not take into account that car-
casses that have been overlooked during one search can be 
found during subsequent searches (‘bleed-through’). There-
fore, for data sets with long persistence times (relative to the 
search interval) and low searcher efficiency (where a high 
proportion of carcasses can be expected to be overlooked 
during the first search and found during subsequent searches) 
it is recommended to use a method that accounts for this 
situation (which may often be the case, thus bleed-through 
should mostly be accounted for) such as Kerns et al. (2005), 
Korner-Nievergelt et al. (2011) or Etterson (2013).

Fourth, if searcher efficiency is likely to change with the 
number of searches a carcass was exposed to or with its age 
the choice should be one of the methods that allow for vari-
able searcher efficiency. This may be particularly important 

on heterogeneous terrain, where some carcasses fall into 
holes and others not, or when some animals are injured and 
seek cover prior to dying. In such cases, the average detect-
ability of a carcass in a cohort decreases with the number of 
searches they were exposed to because easy to detect carcasses 
are found first. Carcass detectability may also decrease due 
to decay of the carcasses, i.e. dependent on carcass age, or 
change with calendar date, e.g. due to vegetation growth.

At present, the package carcass provides the following  
different methods to calculate p: Huso’s estimator 
(Huso 2010), the formula we developed earlier (Korner- 
Nievergelt et al. 2011) including some extensions, and 
the recently published formulae by Etterson (2013). The 
methods currently provided by carcass are summarized 
in Table 3. The formula presented by Huso (2010) and 
implemented in the software Huso et al. (2012) require a 
mean persistence time estimates from a parametric model 
such as an exponential or Weibull model. The formula 
Korner-Nievergelt et al. (2011) assumes constant per-
sistence probability and constant or decreasing searcher 
efficiency. In the package carcass we extend the formulas 
published in Korner-Nievergelt et al. (2011) to allow for time 
variation (based on parametric or non-parametric models)  
of persistence probabilities (Supplementary material Appen-
dix 1). The formulas by Etterson (2013) are based on the 
same model as the one in Korner-Nievergelt et al. (2011). 
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Table 2. Overview over the most commonly used methods to estimate mortality from carcass searches (using unmarked carcasses). For every 
method, assumptions regarding the regularity of the search interval, the carcass persistence probability, and searcher efficiency are given.  
The 5th column indicates whether the method accounts for carcasses that are not found during one search but found in subsequent searches 
(termed ‘bleed-through’ by Warren-Hicks 2013). The last column names software with the specific method implemented. The first part of  
the table (“Formulas”) contains methods that first estimate the probability that a killed animal is found and, subsequently, use the total num-
ber of carcasses found together with the estimated detection probability to get a mortality estimate, e.g. a Horvitz–Thompson estimate or a 
posterior distribution using Bayes’ theorem. The second part of the tables (‘Models’) contains statistical models that are fitted to the raw search 
data (number of carcasses found for every single search) taking detection probability into account. The table is adapted from Bernardino et al. 
(2013).

Estimator Search interval Persistence probability Searcher efficiency

Carcass not found 
during a search can 

be found in a 
subsequent search Software

Formulas
Shoenfeld 2004  

(Eq. 4/5)  
Erickson et al. 2004 

(p. 8)

search intervals are 
Poisson-distributed with 
mean search interval d-

removal times follow a 
Poisson or an 
Exponential 
distribution

? yes
but assumes 100% 

bleed-through 
(Warren-Hicks 
2013)

- R-package carcass

Kerns et al. 2005  
(Eq. 6/7)

regular ? constant yes

Jain et al. 2007 (Eq. 
8)

no explicit assumptions constant ? no – Wildlife Fatality 
Estimator  
( www.bio3.pt )

Pollock 2007  
(Eq. 8/9)

regular number of verifications 
before removal follows 
a geometric model

? no

Huso 2010 (Eq. 10) no explicit assumption one of several potential 
parametric survival 
models: Weibull, 
loglogistic, lognormal, 
exponential

constant no – Huso et al. (2012) 
( http://pubs.er.
usgs.gov/
publication/
ds729 )

– R-package carcass
– Wildlife Fatality 

Estimator  
( www.bio3.pt )

Huso et al. 2012 regular or irregular constant or depending on 
carcass age

constant or time variable no – Huso et al. (2012)

Korner-Nievergelt 
et al. 2011  
(Eq. 11/12)

regular constant constant or depending 
on the number of 
searches per carcass 
(i.e. carcass age)

yes – R-package carcass
– Wildlife Fatality 

Estimator  
( www.bio3.pt )

– www.kollision-
sopfersuche.
uni-hannover.de/

this article regular constant or depending on 
carcass age (any 
survival function)

constant or decreasing 
exponentially with 
the number of 
searches per carcass 
(i.e. carcass age)

yes – R-package carcass

Etterson 2013 regular or irregular constant or dependent on 
carcass age or 
dependent on calendar 
date

constant or dependent 
on number of 
searches per carcass 
or dependent on 
calendar date

yes – R and Matlab code 
in electronic 
supplement

– R-package carcass

Dalthorp et al. 
2014

regular or irregular one of several potential 
parametric survival 
models: Weibull, 
loglogistic, lognormal, 
exponential

constant or depending 
on carcass age

Yes http://pubs.er.usgs.
gov/publication/
ds881

Models
Korner-Nievergelt 

et al. 2013
regular or irregular constant constant yes – Bugs code in 

electronic 
supplement

Péron et al. 2013
Péron and Hines 

2014

regular or irregular (but for 
all sites the same 
sampling protocol has to 
be used)

constant or different 
between two classes 
(e.g. ‘fresh’ and ‘old’) 
of the carcasses

constant or different 
between age classes 
(e.g. ‘fresh’ and ‘old’) 
of the carcasses

yes – R-package fatality 
CMR

Etterson 2013 regular or irregular requires 
double searches and 
marking of carcasses

constant or time 
dependent

constant or depending 
on carcass age

yes – R and Matlab code 
in electronic 
supplement

Wolpert in 
Warren-Hicks et 
al. 2013

regular or irregular Weibull (including 
exponential)

constant or depending 
on carcass age and 
number of searches 
per carcass

yes – R-package in 
preparation

 The model code can be adapted to allow for any survival function or for any relationship of searcher efficiency with carcass age or the 
number of searches a carcass has experienced. The model based approach allows including covariates for any model parameters.
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Table 3. Overview of the functions currently provided by carcass for calculating the carcass detection probability p from persistence prob-
ability s, searcher efficiency f, and optional additional information such as search interval d or a vector of lengths of search intervals of dif-
ferent lengths J. All functions, except phuso account for bleed-through (Table 2).

Search interval
Searcher  
efficiency

Persistence  
probability

Function in 
carcass

Regular constant constant phuso
pkorner
ettersonEq14

Regular decreasing with number of 
searches

constant phuso
pkorner
ettersonEqv2

Regular constant dependent on age of carcass (input: 
‘survivor curve’)

pkorner

Regular decreasing with number of 
searches

dependent on age of carcass (input: 
‘survivor curve’)

pkorner

Irregular constant constant ettersonEq14
Irregular constant or dependent on 

calendar date
constant or dependent on calendar date ettersonEqv1

Irregular constant or dependent on the 
number of searches

constant or dependent on age of carcass 
(input: daily persistence probability)

ettersonEqv2

A mathematical proof that Eq. 15 of Etterson (2013) is 
equivalent to the formula Korner-Nievergelt et al. (2013) 
is given in Supplementary material Appendix 2. Etterson 
(2013) provided a generalization of this formula that allows 
for irregular search intervals. He further provides two differ-
ent variants of time dependence in searcher efficiency and 
persistence probability (on carcass age or calendar date).

Detection probability p is a function f(s,f,a,d,n), where s is 
the persistence probability, f the searcher efficiency, a the pro-
portion of carcasses that have fallen into the search area, d the 
search interval (usually in days), and n the number of searches. 
In case of irregular search intervals, a vector with the length of 
the search intervals J is used instead of d and n. The factor a 
affects p in a simple multiplicative way, therefore, we can write 
p   f(s,f,d,n), or p   f(s,f,J) respectively, and p  ap .

Calculation of p  assuming constant persistence and 
constant searcher efficiency
Let’s assume that searcher efficiency f and persistence prob-
ability s are constant. Then we use either of the functions 
phuso, or pkorner for regular search intervals or etter-
sonEq14 for irregular search intervals.
The function phuso is based on the average persistence time 
(t ) which is 1/-log(s) in the case of a constant persistence 
probability. We can either provide s or t . The search interval 
d has to be provided in addition to s and f. For pkorner 
we have to provide the total number of searches n in addition 
(dn is then the length of the study period), and ettersonEq14 
requires a vector with the lengths of the search intervals.

The function pkorner provides 95% confidence intervals 
of the detection probability if the argument CI is set to TRUE 
and lower and upper limits of s and f are given. These confi-
dence intervals are obtained by Monte Carlo simulations.

For the result of ettersonEq14 a Monte Carlo con-
fidence interval can be calculated by the function CIet-
terson.

The function ettersonEq14 can handle irregular 
search intervals.

Note that when defining a constant s, it is assumed that 
carcasses arrive only at the beginning of each time interval. 
To account for continuous carcass arrival, the survivor func-
tion (proportion of persisting carcasses for each day after 
death) has to be integrated over each time interval and the 
formulas allowing for time variable persistence probabilities 
used (use ‘sca’ instead of ‘vars’ below).
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The function ettersonEq14v1 allows for searcher 
efficiency that depends on calendar date. For example,  
the searches started in high and dense crop where  
searcher efficiency was low and after half-time of the 
study the crop was cut so that searcher efficiency suddenly 
increased.

For the confidence intervals, use CIetterson.
The function phuso does not allow one to specify the fac-

tor of the decrease in searcher efficiency with each search, but 
it seems to be fairly robust with respect to a decrease in searcher 
efficiency (Huso 2010, Korner-Nievergelt et al. 2011), and 
the new software Huso (2012) and Dalthorp et al. (2014) also 
allows for time dependence in searcher efficiency.

Calculation of p  assuming time-variable persistence and 
constant searcher efficiency
The functions pkorner and ettersonEq14v2 can 
deal with persistence probabilities that vary with the age of 
the carcass. pkorner takes the proportion of remaining 
carcasses for each day after death in a vector as input (i.e. 
the ‘survivor curve’; output of persistence.prob with non-
constant persistence), whereas ettersonEq14v2 takes a 
vector with daily persistence probabilities for every possible 

Calculation of p  assuming constant persistence 
probability and time-variable searcher efficiency
If the detectability differs between the carcasses, e.g. because some 
carcasses have fallen into a hole whereas others are exposed, the 
average detectability of a cohort of carcasses will decrease with 
the number of searches they were exposed to. This is because 
easily detectable carcasses will be found during earlier searches 
whereas hard to detect carcasses remain on the ground. Huso 
(2010) suggests that the decrease in average detectability with 
each search may be as high as 75%. The function pkorner 
permits modelling such a decrease by setting the argument 
search.efficiency.constant  FALSE. The argument k allows 
one to specify the factor by which the searcher efficiency f (of a 
cohort of carcasses) is multiplied at each search (that the cohort 
is exposed to). The mathematical derivation of this formula is 
given in the Supplementary material Appendix 1.

If the argument CI is set to TRUE, a 95% confidence 
interval is calculated using Monte Carlo simulations.

The function ettersonEq14v2 allows specifying 
different searcher efficiencies for all possible number of 
searches a carcass has been exposed to. For example, when 
detectability of a carcass is high during the first search and 
then drops markedly, because the easy to detect carcasses are 
found during the first search but later the change in aver-
age detectability between two searches may vanish, this pat-
tern can be specified by a vector that contains the searcher 
efficiency for every search separately. Note that persistence 
probability needs to be specified for every possible age of a 
carcass in the study.

Searcher efficiency can also decrease with age of the car-
cass. To account for age-dependent searcher efficiency is not 
yet implemented. However, in case of regular (and short) 
search intervals, carcass age corresponds to the number of 
searches a carcass has been exposed to, and ettersonEq14 
or pkorner may be applied. The R-package carcass-

CMR (Péron and Hines 2014) can estimate searcher efficiency 
dependent on two age classes (old versus fresh). The R-package 
that is currently under development by R. Wolpert (Table 2) 
will be able to account for searcher efficiency that depends on 
age and the number of searches a carcass has been exposed to.
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carcass age. Both functions cannot handle missing values, 
thus these need to be imputed.

If the argument CI is set to TRUE, a 95% confidence 
interval is calculated using Monte Carlo simulations.

To use the function ettersonEq14v2, e.g. because 
search intervals were irregular, the daily persistence probabil-
ities instead of the survivor curve has to be given. Here, we 
extract the daily persistence probabilities from the survivor 
curve and impute the missing values for the carcasses with 
age higher than 14 days with the estimate for day 14.

If daily persistence probability depends on calendar date 
rather than carcass age, the function ettersonEq14v1 
is used.

Also, for the last two estimates, confidence intervals can be 
calculated using the function CIetterson.

Calculation of p  assuming time-variable persistence and 
time-variable searcher efficiency
We can allow for both decreasing searcher efficiency with 
the number of searches a carcass was exposed to and time-
variable persistence for regular (pkorner or etter-
sonEq14v2) and irregular (ettersonEq14v2) search 
intervals.

Again, it is possible to specify CI  TRUE to obtain 
a 95% confidence interval. And, again, we recommend 

using more than the 100 simulations (  2000) given in the  
example code.

Or, when both persistence probability and searcher effi-
ciency depend on calendar date:
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And confidence intervals for the estimates obtained by the 
formulas of Etterson (2013) are calculated by CIetterson.

Last important step to obtain p
Finally, we have to combine the probability that a carcass 
that has fallen into the search area is found by an observer 
p  with the proportion of carcasses that have fallen into the 
search area a to obtain the probability that an animal that 
has died during the study period is found by an observer 
p. In the simple example used here with one visibility class 
only (p  is equal for all sub-units of the search area), p is the 
product p  ap . When p  differs between sub-units (e.g. 
due to different visibility classes), p is a weighted average of 
the sub-unit-specific p k with weights equal to the propor-
tions of carcasses within the different sub-units (ak, see sec-
tion ‘Searcher efficiency’).

Estimate the number of animals that have died (N)
Assuming that a is constant over time and that no carcass 
has been present at day one of the study (which is the day of 
the first search minus the search interval d), the probability  
p is used to estimate the number of animals that have died  
N  from the number of carcasses found (c). The method 
implemented in carcass is using Bayes’ Theorem with a  
uniform prior distribution (Korner-Nievergelt et al. 2011, 
Niermann et al. 2011). Thereby, for any x, the probability 
that N equals x is given by:

P N x
x

c

p

i

c
p

x c

i c

i c

x

1

1

If we assume that the detection probability p is known 
(without error), we use the function posteriorN. The 
function returns the probability for each possible value of 
N given c (argument nf, number found) and p, if the argu-
ment dist  TRUE. If dist  FALSE, the function returns 
the median of the posterior distribution (expected) and the 
2.5% and 97.5% quantiles (95% credible interval). The 
Horvitz–Thompson (Horvitz and Thompson 1952) estimate 

(HT.estimate) equals the number of carcasses found divided 
by p.

To take into account the error in the estimate of p we  
can use the function estimateN. This function uses 
Monte Carlo simulation to propagate the uncertainty of p 
to the estimate of N, as presented in the worked example in 
Korner-Nievergelt et al. (2011).

The message tells us what assumptions are made concern-
ing the arrival of the carcasses and the time dependence of 
the carcass persistence probability and how we could change 
this if needed. Further, it plots the posterior distribution of 
the number of dead animals if the argument plot is set to 
TRUE (Fig. 2). The argument pform is one of ‘etterson’, 
‘huso’ or ‘korner’. In the argument ‘x’ it is specified which 
posterior probabilities P(number of animals killed  x) are 
given in the output.

Thus, for turbine 1 with three carcasses found by the 
observers, we conclude based on the estimates for the pro-
portion of carcasses that have fallen into the search area 
a  0.67, the daily persistence probability s   0.80, and the 
searcher efficiency  f̂   0.79 that the true number of fatali-
ties must be around 7 with a 95% credible interval of 3–18, 
taking into account the uncertainties in the estimates s and 

Figure 2. Posterior distribution of the number of fatalities.
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f̂ . Or: there is only a small probability (of 0.01) that the true 
number of fatalities was larger than 20.

Discussion

Unlike in approaches based on stochastic models, as pro-
vided in the R-package fatalityCMR (Péron et al. 2013) 
or presented in Etterson (2013) and Korner-Nievergelt et al. 
(2013), there is no formal method to assess whether the 
model assumptions are met or to do model selection, since 
the methods implemented in carcass are deterministic for-
mulas rather than stochastic models that are fit to the data. 
No likelihood or other measure of model fit exists for such 
formulas. Therefore, it is important to decide whether time 
or age dependent persistence times or searcher efficiency are 
needed at the time when these parameters are estimated, e.g. 
by plotting the observed proportion of persisting carcasses 
over time together with the model estimates (as in Fig. 1). To 
assess whether searcher efficiency depends on carcass age, the 
search efficiency experiments have to be done with carcasses 
of different ages and its influence on searcher efficiency has 
to be analysed in separate analyses. Similarly, effects of calen-
dar date need to be investigated for each single study.

Mortality estimates based on carcass searches can be very 
uncertain especially when the number of carcasses found 
and detection probability are low. In a simulation study, we 
showed that the relative error in the point estimate for mortal-
ity strongly increases when the number of carcasses found is 
lower than 10 (Korner-Nievergelt et al. 2011). A consequence 
of the high uncertainty of estimates for N   based on a low 
number of carcasses found is that sums of N  (e.g. over many 
turbines within a wind park) will overestimate the total num-
ber of fatalities for the whole wind park. In such a case, we 
recommend estimating the total number of fatalities based on 
the sum of the turbine-specific counts using an average detec-

tion probability rather than summing the single turbine-spe-
cific estimates N , or use the posterior probability that the true 
number of fatalities does exceed a specific number instead of 
the point estimate. Alternatively, a fully model based approach 
could allow estimation of turbine specific fatality rates based 
on a data set pooled over several turbines (Bellebaum et al. 
2013, Korner-Nievergelt et al. 2013, Péron et al. 2013).

The aim of the functions provided by carcass (listed in Table 
3) is to provide easy to apply mortality estimators while taking 
the most important variance in carcass persistence time and 
searcher efficiency into account. As often, there is a tradeoff 
between simplicity and flexibility. The methods will perform 
well as long as the data meets the underlying assumptions, 
explained in Table 3 and the text. However, if the data shows a 
higher complexity, e.g. when persistence probability simulta-
neously depends on calendar date and age of the carcass, mor-
tality estimates will be more precise when using more complex 
models such as done by Bellebaum et al. (2013), Etterson 
(2013), Korner-Nievergelt et al. (2013) or Péron et al. (2013). 
Nevertheless, carcass provides a variety of different methods 
that can be combined in a flexible way. The user can choose in 
each step of the analysis the most appropriate model for the 
specific study to reduce bias in the mortality estimation.     

Acknowledgements – We sincerely thank Barbara Hellriegel for  
assistance with the mathematical part of the work. Stefanie Kramer 
and Guillaume Péron gave valuable comments on the manuscript. 
Any use of trade, firm, or product names is for descriptive purposes 
only and does not imply endorsement by the U.S. Government.

References

Arnett, E. B. et al. 2005. Relationships between bats and wind 
turbines in Pennsylvania and West Virginia: an assessment of 
fatality search protocols, patterns of fatality, and behavioral 



43

Korner-Nievergelt, F. et al. 2011. A new method to determine bird 
and bat fatality at wind energy turbines. – J. Wildl. Biol. 17: 
350–363.

Korner-Nievergelt, F. et al. 2013. Estimating bat and bird  
mortality occurring at wind energy turbines from covariates 
and carcass searches using mixture models. – PloS ONE 
8:e67997.

Kunz, T. H. et al. 2007. Ecological impacts of wind energy  
development on bats: questions, research needs and hypothe-
ses. – Front. Ecol. Environ. 5: 315–324.

Lebreton, J.-D. et al. 1992. Modelling survival and testing  
biological hypotheses using marked animals: a unified approach 
with case studies. – Ecol. Monogr. 62: 67–118.

Niermann, I. et al. 2011. Systematische Schlagopfersuche - Meth-
odische Rahmenbedingungen, statistische und Ergebnisse. 
Cuvillier Verlag, Göttingen, pp. 40–115, in German with Eng-
lish summary.

Niermann, I. et al. 2014. Kollisionsopfersuchen als Grundlage zur 
Überprüfung der Wirksamkeit von Abschaltalgorithmen. – In: 
Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-
Windenergieanlagen - Endbericht des Forschungsvorhabens 
gefördert durch das Bundesministerium für Umwelt, Naturschutz 
und Reaktorsicherheit (Förderkennzeichen 0327638C  D). – O. 
Behr et al. Erlangen/Hannover/ Freiburg.

Péron, G. and Hines, J. E. 2014. fatalityCMR – Software to  
estimate fatalities at wind-farms. – USGS-PWRC.  

www.mbr-pwrc.usgs.gov/software/fatalityCMR.html .
Péron, G. et al. 2013. Estimation of bird and bat mortality at wind-

power farms with superpopulation models. – J. Appl. Ecol. 50: 
902–911.

Pollock, R. 2007. Recommended formulas for adjusting fatality 
rates. California guidelines for reducing impacts to birds and 
bats from wind energy development. Final commission report. 
C. E. C. a. C. D. o. F. a. Game. – California Energy Commis-
sion, Renewables Committee, and Energy Facilities Sitting 
Divisions, and California Dept of Fish and Game, Resources 
Management and Policy Division, pp. 117–118.

Santos, S. M. et al. 2011. How long do the dead survive on the 
road? Carcass persistence probability and implications for 
road-kill monitoring surveys. – PloS ONE 6:e25383.

Schaub, M. and Lebreton, J.-D. 2004. Testing the additive versus 
the compensatory hypothesis of mortality from ring recovery 
data using a random effects model. – Anim. Biodiv. Conserv. 
27: 73–85.

Shoenfeld, P. 2004. Suggestions regarding avian mortality  
extrapolation. – Technical memo provided to FPL Energy.  
– West Virginia Highlands Conservancy, Davis, WV, p. 6.

Van Pelt, T. and Piatt, J. 1995. Deposition and persistenceof  
beachcast seabird carcasses. – Mar. Pollut. Bull. 30: 794–802.

Ward, M. et al. 2006. Wild bird mortality and west nile virus 
surveillance: biases associated with detection, reporting, and 
carcass persistence. – J. Wildl. Diseases 42: 92–106.

Warren-Hicks, W. et al. 2013. Improving methods for estimating 
fatality of birds and bats at wind energy facilities. Public  
Interest Energy Research (PIER) Program, Final project report. 
– California Energy Commission. Berkeley, CA, California 
Wind Energy Association: p. 136.

interactions with wind turbines. – Tech. Rep., Bat Conserv. 
Int.

Bates, D. 2005. Fitting linear mixed models in r using the lme4 
package. – R News 5: 27–30.

Bellebaum, J. et al. 2013. Wind turbine fatalities approach a level of 
concern in a raptor population. – J. Nat. Conserv. 21: 394–400.

Bernardino, J. et al. 2013. Estimating bird and bat fatality at wind 
farms: a practical overview of estimators, their assumptions 
and limitations. – N. Z. J. Zool. 40: 63–74.

Bispo, R. et al. 2013. Modeling carcass removal time for avian 
mortality assessment in wind farms using survival analysis.  
– Environ. Ecol. Stat. 20: 147–165.

Bolker, B. M. et al. 2009. Generalized linear mixed models: a prac-
tical guide for ecology and evolution. – Trends. Ecol. Evol 24: 
127–135.

Dalthorp, D. et al. 2014. Evidence of Absence software. Data 
Series. – US Geological Survey.

Erickson, W. P. et al. 2004. Stateline wind project wildlife monitor-
ing final report, July 2001 – December 2003. – Tech. Rep. 
peer-reviewed by and submitted to FPL Energy, the Oregon 
Energy Facility Siting Council, and the Stateline Technical 
Advisory Committee.

Etterson, M. A. 2013. Hidden Markov models for estimating  
animal mortality from antropogenic hazards. – Ecol. Appl. 23: 
1915–1925.

Gelman, A. and Pardoe, I. 2006. Bayesian measures of explained 
variance and pooling in multilevel (hierarchical) models.  
– Technometrics 48: 241–251.

Gelman, A. and Hill, J. 2007. Data analysis using regression and 
multilevel/hierarchical models. – Cambridge Univ. Press.

Guinard, E. et al. 2012. Motorways and bird traffic casualties: carcass 
surveys and scavenging bias. – Biol. Conserv. 147: 41–51.

Horvitz, D. G. and Thompson, D. J. 1952. A generalization of 
sampling without replacement from a finite universe. – J. Am. 
Stat. Ass. 47: 663–685.

Hull, C. L. and Muir, S. 2010. Search area for monitoring bird 
and bat carcasses at wind farms using a Monte Carlo model. 
– Aust. J. Environ. Manage. 17: 77–87.

Huso, M. M. P. 2010. An estimator of wildlife fatality from 
observed carcasses. – Environmetrics 22: 318–329.

Huso, M. and Dalthorp, D. 2014. Accounting for unsearched areas 
in estimating wind turbine-caused fatality. – J. Wildl. Manage. 
78: 347–358.

Huso, M. et al. 2012. Fatality estimator users guide. – US  
Geological Survey Data Series 729.

Jain, A. et al. 2007. Annual report for the Maple Ridge wind power 
project: post-construction bird and bat fatality study 2006. 
Final report. – L. Curry & Kerlinger. Syracuse, NY, Curry & 
Kerlinger, LLC: 53.

Kerns, J. et al. 2005. Bat and bird fatality at wind energy facilities 
in Pennsylvania and West Virginia. – In: Arnett, E. B.  
(ed.), Relationships between bats and wind turbines in Penn-
sylvania and West Virginia: an assessement of fatality search 
protocols, patterns of fatality, and behavioural interactions 
with wind turbines. A final report prepared for the bats and 
wind energy cooperative. – Bat Conserv. Int., Austin, TX, 
USA, pp. 24–95.




