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Abstract
1.	 Functional traits are increasingly being used to understand the response of species to 

environmental change and their effects on ecosystem functioning. However, some 
ecologically important traits, such as plant height, influence the probability of species 
detection during field surveys. Imperfect detection of species could therefore bias 
measures of functional trait composition and diversity, leading to incorrect estimates 
of trait–environment relationships due to a process of “detection filtering.” The im-
portance of detection filtering for functional ecological studies remains unknown.

2.	 We used hierarchical models that account for detection filtering to analyse data on 
1,296 vascular plant species sampled in 362 1-km2 plots, distributed along a 
2,460-m elevational gradient in Central Europe. We examined how detection filter-
ing altered measures of functional diversity (multivariate functional richness and 
packing) and composition (community means of three traits). We also determined 
whether the strength of detection filtering varied over the gradient, to determine 
whether detection filtering biased trait–environment relationships.

3.	 Species detectability was correlated with all three functional traits tested in this 
study, meaning that short species with small seeds and high specific leaf area values 
were less likely to be detected. This suggests that imperfect detection has the po-
tential to bias measures of functional composition. Generally, measures of functional 
composition were not strongly affected by detection filtering, but functional packing 
was underestimated when detection filtering was not accounted for. In addition to 
the traits, distributional characteristics were important; rare species and species oc-
curring mainly at low elevations tended to have lower detection probabilities.

4.	 Overall, detection filtering did not strongly bias trait–environment relationships be-
cause the effects of the environment on functional composition and diversity were 
larger than the effects of detection.

5.	 Our results suggest that many measures of functional composition and diversity are 
robust to detection filtering, but some are likely biased. Functional ecologists 
should consider correcting for imperfect detection, and our approach provides a 
simple method to do so for a wide range of datasets.
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1  | INTRODUCTION

Due to constraints in field surveys, it is usually not possible to ob-
tain a complete list of species for a given community at a given time 
(Cardoso, Rigal, Borges, Carvalho, & Faith, 2014). Imperfect detec-
tion of species is therefore an important source of bias when com-
paring species richness among communities (Kéry & Schmid, 2004; 
Yoccoz, Nichols, & Boulinier, 2001). Recent studies have asked 
whether imperfect detection might also bias other important di-
mensions of biodiversity, such as functional diversity (Cardoso et al., 
2014; Mihaljevic, Joseph, & Johnson, 2015; van der Plas, van Klink, 
Manning, Olff, & Fischer, 2017). Jarzyna and Jetz (2016) suggested 
that detectability depends not only on site and survey conditions, 
but also on characteristics of individual species, that is on their traits. 
As measuring the diversity or composition of species traits within 
communities is at the core of functional ecology, imperfect detection 
could be of particular concern if detectabilities are correlated with 
certain species traits.

Some functional traits likely influence the probability of detecting 
species during field surveys. For example, plant height is commonly 
used in functional diversity research (Götzenberger et al., 2012), and 
larger plant species are likely more detectable than smaller species 
(Chen, Kéry, Plattner, Ma, & Gardner, 2013). Therefore, imperfect 
detection may “filter” the smaller species, or species with a specific 
growth habit, from a dataset, a process that we term detection filter-
ing. Of course, detection will also depend on the type of community: 
in a heavily grazed grassland, all species are low growing, and there-
fore, short species are more likely to be detected than in an ungrazed 
system. We define detection filtering as a methodological process 
that selects which species are observed in a community, depending 
on their functional traits. Thus, we distinguish detection filtering from 
ecological filtering (or assembly rules sensu Keddy, 1992), caused by 
dispersal, environmental conditions or biotic interactions, which se-
lects for or against species from the regional species pool depending 
on their functional traits. The detection filter could operate in a similar 
way to ecological filters by causing a signature of nonrandom func-
tional composition.

This view of community assembly suggests a hierarchical process 
in which the species observed in a community depends on a series 
of ecological and detection filters. Hierarchical models (Kéry & Royle, 
2016) could allow this process to be modelled. Hierarchical models 
contain two or more linear models that are conditionally related to 
each other; see Kéry and Royle (2016) for a detailed discussion of 
the framework of hierarchical models that can be fitted to presence/
absence or abundance data, accounting for imperfect detection. 
Guillera-Arroita (2017) provides a recent review, in which Figure 1 
gives an overview of model structure and data needs of hierarchical 
models that account for imperfect detection.

To functionally characterize communities, occurrence data (occur-
rences of the species recorded in a set of sampling units) and trait 
data (a set of traits measured for the observed species) are typically 
combined to calculate metrics of functional diversity or composition. 
Often the trait data contain many missing values (Sandel et al., 2015). 

Given that frequently measured species often have different trait val-
ues from rarely measured species (Sandel et al., 2015), gaps in trait 
data are likely nonrandom. Consequently, there is increasing concern 
that metrics of functional diversity are sensitive to gaps in the trait data 
(Májeková et al., 2016; Pakeman, 2014), and robust methodologies to 
impute missing values in trait data have been developed (Stekhoven 
& Buhlmann, 2012; Swenson, 2014). In contrast, only a few studies 
have investigated whether metrics of functional diversity are affected 
by missing species in the occurrence data (van der Plas et al., 2017). 
A reason for this might be that missing species lead to false absences 
(i.e. zeroes in the occurrence data), which are less obvious than gaps 
in trait data. Nonetheless, the consequences of missing species in oc-
currence data might be similar to those of missing trait values because 
in both cases, a nonrandom selection of species is excluded from the 
calculation of functional diversity measures.

In this study, we therefore ask whether false absences of spe-
cies in the occurrence data may cause a signature of nonrandom 
functional composition, similar to ecological filtering. If overlooking 
species during sampling results in consistently lower or higher func-
tional diversity, or in a consistent change in composition values, then 
comparative studies may not be strongly affected (van der Plas et al., 
2017). However, if these biases are stronger in certain environmental 
conditions, then detection filtering could affect studies that correlate 
functional diversity/composition with environmental gradients (e.g. 
Soliveres & Maestre, 2014), as well as observational studies that use 
functional composition to predict ecosystem function metrics (e.g. 
Allan et al., 2015). We propose hierarchical models as a ready-to-use 
method to estimate the missing species in occurrence data.

To test this, we analysed a large dataset containing occurrences 
of plant species in 362 1-km2 plots from the Swiss Biodiversity 

F IGURE  1 Results of applying the method to meta-community 
data where 27% of 100 species were observed in less than 10% 
of 200 sites. Community means (CMs) of true communities (open 
orange dots, only known because data were simulated), CMs of 
observed communities (black dots) and CMs from detection-
corrected communities (red +) along elevational gradient. The lines 
represent the regression lines from linear models with CMs as 
dependent variable and the gradient as predictor
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Monitoring programme (BDM). We estimated average detection prob-
abilities for 1,296 plant species and tested whether species-specific 
detection probabilities were correlated with certain functional trait 
values. Detection filtering will occur if detection probability depends 
on the expression of one or more functional traits. We then compared 
measures of the functional composition and diversity of observed 
communities with the same measures calculated for communities with 
imputed missed species (i.e. detection-corrected communities). To test 
whether detection filtering obscured trait–environment relationships, 
we examined how the difference between detection-corrected and 
observed communities changed along an elevational gradient. We 
focused on three functional traits that are whole-plant properties 
(Laughlin, 2014; Westoby, 1998): specific leaf area (ratio of fresh leaf 
area to leaf dry mass), plant canopy height and seed mass. We also 
determined the impact of detection filtering on the functional com-
position of the communities, measured as community means of single 
traits. We used trait means rather than the more commonly employed 
community-weighted means because we do not have abundance data 
for the species. We also calculated the effect of detection filtering on 
two functional diversity measures that describe the functional space 
of plant communities in terms of filling (measured as the functional 
richness) and packing (measured as the mean nearest neighbour dis-
tance; Laliberte & Legendre, 2010; Swenson & Weiser, 2014).

2  | MATERIALS AND METHODS

2.1 | Study area and plant data

Data collection took place between 2010 and 2014 within the Swiss 
Biodiversity Monitoring (BDM) scheme (Weber, Hintermann, & 
Zangger, 2004). A total of 428 study plots of 1 km2 were distributed 
in a regular grid across the whole of Switzerland. Each year, one-
fifth of the sample plots were surveyed. These plots were chosen so 
that they constituted a regularly spaced subsample of all plots. The 
botanists performing the surveys received special training to reduce 
among-observer variation. The presence or absence of 2,674 plant 
taxa was recorded in each plot, along a 2.5-km transect that followed 
existing trails wherever possible. If no trails existed, surveyors marked 
the transect route in the field and plotted it on a map. At a sample plot, 
the transect was inspected once in spring and again in summer, en-
suring that data collection spanned variation in flowering phenologies 
(Pearman & Weber, 2007). Exceptions were made for sample plots at 
high elevations, where only one inspection per field season was con-
ducted because of the short growing period (however, we excluded 
these plots from analyses, see below). During each inspection, a sur-
veyor recorded all plant species within 2.5 m of the transect while 
walking it in both directions at a slow speed of approximately 3 km/h.

The robustness of the survey methods was assessed in a previ-
ous study (Plattner, Weber, & Birrer, 2004) in which two botanists 
independently recorded 23 transects. The mean species richness on 
these transects was 250 species. The number of species recorded by 
the two botanists differed by 19.7 ± 4.9 species (M ± SE) per tran-
sect, which corresponds to a relative surveyor effect of 7.9%. An 

unpublished study was designed to quantify the bias introduced by 
choosing transects that follow existing trails. Species were recorded in 
15 1-km2 plots, using randomly placed transects of 2.5 km rather than 
the regular transects. On average, 10% more species were recorded in 
the plots when the regular transects were followed, compared to the 
randomly placed transects. In general, ruderal and grassland species 
tended to be more common along the regular trails, while species of 
wet meadows tended to be more common on the random transects. 
However, estimated indicator values, derived from expert knowledge 
(values 1–5 in 0.5 steps) for Swiss plants (Landolt et al., 2010), did not 
strongly differ between regular and random transects. The average in-
dicator values for light, moisture, nutrients, reaction (content of free 
H-ions in the soil, from acid soils to soils rich in bases) or temperature 
of recorded species did not differ significantly between the types of 
transects, indicating that the regular transects capture well the func-
tional composition of the plots.

We only analysed plots that had been visited twice in the year 
they were surveyed, that is we removed the high Alpine plots. This 
resulted in a sample of 362 study plots. Median elevation within plots 
ranged from 250 m to 2,710 m (a.s.l.), while the mean plot elevation 
was 1,104 m ± 612 (SD). On average, there was a gap of 77.6 days 
between the first and the second visit to the sample plots, and this dif-
ference was relatively stable across the elevational gradient (the num-
ber of days between first and second visits decreased by 0.02 days per 
100 m along the elevational gradient, linear model, p = .905).

2.2 | Trait data

We used the leaf-height-seed plant ecology strategy scheme 
(Westoby, 1998) to focus our study on traits from multiple organs 
(Laughlin, 2014; Westoby, 1998). We analysed three traits: specific 
leaf area (ratio of fresh leaf area to leaf dry mass, SLA), canopy height 
(CH) and seed mass (SM). Data for these traits came from the LEDA 
trait database (Kleyer et al., 2008). The traits were partly correlated 
(SLA and CH: r = −.18; SLA SM: r = −.07; CH and SM: r = .31, all 
n = 1,296).

We were able to find trait data for most of the species, but some 
trait values were missing (Table 1). If the species with missing trait val-
ues are not a random subset of all species, ignoring those species will 
lead to biased functional diversity measures (Pakeman, 2014; Penone 
et al., 2014). The trait coverage at the species level (i.e. the percent-
age of species with available trait values) was lower than the coverage 
at the observation level (the percentage of observations with avail-
able trait values; Table 1). This suggests that rare species were more 
likely to have missing trait values than common species. Therefore, 
removing species with missing trait values from the analyses would 
be similar to removing rare species from the analyses, which is likely 
to bias the results (Lyons & Schwartz, 2001). To avoid this source of 
bias, we imputed the missing trait values and included all species in 
the analyses.

Missing trait values were imputed with random forest estimation 
(R package missForest version 1.4; Stekhoven & Buhlmann, 2012). 
Random forests constitute a popular method for many machine 
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learning tasks. The basis of this analysis is decision trees that are con-
structed using the species with available trait values. Application of 
random forest constructs and combines a multitude of such decision 
trees to increase predictive performance. To predict a missing trait 
value, random forest uses extant values of the same and other traits. 
Traditional regression techniques could also be used for this analysis, 
but decision trees allow more complex models to be fitted, with many 
interactive and nonlinear effects (Breiman, 2001). This approach avoids 
bias and retains relationships among traits (Penone et al., 2014). The 
random forest approach outperforms other approaches for estimating 
missing values in trait databases (Penone et al., 2014; Stekhoven & 
Buhlmann, 2012).

After imputation, trait values were log-transformed (Westoby, 
1998) and then normalized to a mean of 0 and a SD of 1, allowing for 
direct comparison among traits (Schielzeth, 2010). Transformation also 
improves the normality of trait data (Májeková et al., 2016).

2.3 | Average species detection probabilities and 
detection-corrected meta-community

Hierarchical models may be expressed as f(y|z) because the out-
come of the random variable y depends on the outcome of the ran-
dom variable z. While z could be the true occurrence or the true 
abundance of a species, y would be the observed occurrence or 
observed abundance of that species. The observed occurrences de-
pend on z and on some sort of measurement error (Kéry & Royle, 
2016). In this study, we used the single-season occupancy model of 
MacKenzie et al. (2002), which is a particular type of hierarchical 
model in which the observations of a species at different sites (the 
data y) depend on the true occurrence for the species at the sites 
(occurrence z). We applied the single-season occupancy model to 
each recorded species separately. Each plot was visited twice dur-
ing a single year. However, note that in each year between 2010 
and 2014, one-fifth of the plots were surveyed and thus fieldwork 
lasted five years. We therefore considered the five-year span as 
the single closed season of the single-season occupancy model. 
Note that the single-season occupancy model assumes that it is 

impossible to observe a species that does not occur in a site (i.e. no 
false positives). The single-season occupancy model is a hierarchical 
model with the form f(yi,j|zi). The binary vector zi, equal in length to 
the number of surveyed sites (indexed with i), describes the true 
occurrence of a species in the sites. The occupancy model that ac-
counts for imperfect detection can concisely be formulated as

where (1) describes occurrence, zi, as a random variable that takes the 
value 1 with occurrence probability Ψi and where (2) is the methodo-
logical model that describes the data, yi,j, as a random variable that 
takes the value 1 (i.e. a species is observed during visit j in site i) with 
probability zipi,j. Therefore, pi,j is the probability of detecting species i, 
assuming that it occurs in site j: a species that does not occur cannot 
be observed (because zi = 0), and a species that does occur will be ob-
served with detection probability pi,j. Predictors of occurrence prob-
ability Ψi and detection probability pi,j can then be added in a similar 
way as in standard generalized linear models. Because of the large 
elevational gradient, we incorporated linear and quadratic terms for 
elevation as predictors of occurrence probability Ψi. Elevation should 
summarize the effects of several environmental variables that affect 
the occurrence of the species (Chen et al., 2013). Because detection 
probability likely depends on phenology, we used the survey date 
(linear and quadratic terms) as predictors of detection probability pi,j 
(Chen et al., 2013).

Note that instead of applying the described single-season occu-
pancy model to each of the observed species separately, an alternative 
approach would be to use a multispecies occupancy model to analyse 
the single-season occupancy of all species together in a single model. 
Such a multispecies occupancy model would provide a more synthetic 
framework to assess uncertainty in estimates and to share informa-
tion across species about factors that might affect detection (Iknayan, 
Tingley, Furnas, & Beissinger, 2014). However, multispecies occu-
pancy models are not implemented in accessible software packages 
and we therefore decided to apply single-season occupancy models to 
each species separately. To do so, we used the function occu of the R 
package unmarked (Fiske & Chandler, 2011).

We estimated the mean detectability of a species by averaging, 
across all plots, the probabilities of detecting it during at least one of 
the two surveys, using detection probabilities from the function occu. 
To test whether the average species detection probability was related 
to the trait values of the species, we applied a linear model with the 
logit-transformed [log( p

1− p
)] average species detection probability as 

the dependent variable and specific leaf area, canopy height and seed 
mass as predictor variables. Further, widespread species are often lo-
cally common, making them easier to detect than sparsely distributed 
species. We added the estimated number of occupied plots per spe-
cies as the fourth predictor in the linear model. Finally, we included the 
average elevation of plots occupied by a species as the fifth predictor 
to test whether detection probability varies with mean elevation of 
occurrence.

(1)zi∼Bernoulli(Ψi)

(2)yi,j∼Bernoulli(zipi,j)

TABLE  1 Variables describing trait values of 1,733 plant species 
that were recorded between 2010 and 2014 on at least one of the 
362 plots from the Swiss Biodiversity Monitoring scheme. Values are 
given as medians (ranges in brackets) of the recorded species. Trait 
coverage is given both as the percentage of species and as the 
percentage of observations for which trait values were available

Trait Median

Coverage 
species 
(%)

Coverage 
observations 
(%)

Specific leaf area: 
the ratio of fresh 
leaf area to leaf dry 
mass (mm2/mg)

22.1 (2.6–150.6) 65 88

Canopy height (m) 0.3 (<0.1–65.0) 80 92

Seed mass (mg) 0.9 (<0.1–10’612.0) 70 87
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To estimate detection-corrected communities, we first calculated 
the occurrence of each species in each plot, that is the zi values. The 
function ranef of the package unmarked was used to estimate poste-
rior distributions of each zi, using empirical Bayes methods, and the 
function bup of the package unmarked was used to extract the mode 
of the posterior probability for each zi. After applying these functions 
to each observed species, we merged the zi values from all species to 
obtain the estimated detection-corrected meta-community. Note that 
we consider the assemblage of species that occurs in a single plot as 
a community. Because zi,k describes 362 communities, we consider all 
plots together to be a meta-community, following the terminology of 
Kéry and Royle (2016).

2.4 | Functional composition and diversity

We calculated functional composition and diversity from the observed 
and detection-corrected meta-community and inferred the effect of 
detection filtering on functional diversity and composition along the 
elevational gradient. To estimate community functional composition, 
we calculated, for each community, the mean trait value across all spe-
cies and did this separately for each of the three functional traits. We 
quantified functional diversity for each community as the multivari-
ate convex hull volume, that is functional richness (FRic). The convex 
hull volume is a multidimensional volume that is the smallest convex 
hull enclosing a set of points (i.e. the trait data) and thus refers to the 
amount of functional space filled by the community (Villeger, Mason, 
& Mouillot, 2008). To calculate FRic, we used the function convhulln 
of the package FD (Laliberte & Legendre, 2010). Communities may 
fill a similar amount of the functional space but could differ in how 
tightly this volume is packed by species (Swenson & Weiser, 2014). 
Thus, we also calculated the mean nearest neighbour distance, using 
the Euclidean distance between species in multivariate trait space 
(Laliberte & Legendre, 2010; Swenson & Weiser, 2014).

2.5 | Simulation, worked example and R package 
detectionfilter

To make our approach more accessible, we applied the described 
method to simulated data. Note that extensive simulations to test 
the performance of hierarchical models have been carried out else-
where (e.g. Bailey, Hines, Nichols, & MacKenzie, 2007); so our aim 
was merely to provide a worked example where modelled results can 
be compared with known values (i.e. the simulation setting) to show 
that our approach is able to reduce bias in the estimation of func-
tional composition and diversity. We borrowed the ideas for the meta-
community simulation from chapter 11.2 in Kéry and Royle (2016) and 
added environmental and detection filtering to this simulation. To add 
environmental filtering, we assumed that the response of species to 
a gradient (i.e. the slope in the binomial GLM with occurrence as de-
pendent variable and gradient as predictor variable) depends on their 
functional traits. To add detection filtering to the simulation, we as-
sumed that the average detection probability of a species depends on 
its functional traits. See Data S1 where we describe the simulation in 

more detail, and Data S2 where we apply our method to the simulated 
data.

We bundled data and all R scripts into the R package detectionfilter, 
which will make it possible to reproduce our results and to employ the 
computational methods that are presented in this article. The package 
can be downloaded from www.github.com/TobiasRoth/detectionfilter. 
This package contains a function to estimate observed meta-community 
data from communities that are subject to ecological and detection fil-
tering, the analysed plant data from the Swiss Biodiversity Monitoring, 
the values for the three functional traits (specific leaf area, canopy height 
and seed mass) for the recorded species, a vignette (i.e. a documentation 
to an R package) that develops the ideas behind the simulation of the 
meta-community, a vignette that describes the workflow to estimate the 
detection-corrected meta-community from observations, using the hier-
archical models implemented in the R package umarked, and a vignette 
that describes all the analyses conducted in this project. The three vi-
gnettes are also available in Data S2.

3  | RESULTS

3.1 | Simulation example including rarely observed 
species

First, we applied our method to simulated meta-community data 
with 100 species and 200 study plots. In this example, two species 
were never observed and 27% of species were observed in less than 
10% of plots (see “Effect of unobserved or rarely observed species” 
in Data S2 for more details). To simulate environmental filtering, we 
simulated a decrease in the community means (CMs) of a functional 
trait along an environmental gradient (open orange dots in Figure 1). 
Due to detection filtering, estimated CMs from observed communi-
ties (black dots in Figure 1) were biased towards high values and the 
estimated slope of CMs along the gradient was less steep than for 
true communities. If CMs are calculated from detection-corrected 
communities (red + in Figure 1), bias is reduced and the slope along 
the gradient more closely follows the slope for the true communities.

3.2 | Swiss plant communities

In total, 1,733 species were recorded on the 362 plots. Including the 
data of both visits, 256.0 ± 52.0 (average ± SD) species were observed 
per plot. The algorithm of the single-season occupancy model failed to 
converge consistently for species with fewer than four observations, 
so we analysed only the 1,296 species (75% of all recorded species) 
with at least four records. To determine the effect on functional diver-
sity of removing the 437 species with fewer than four observations, 
we calculated all measures of functional composition and diversity 
for communities including all observed species and for communities 
with the rare (<4 plots) species excluded. We found removing the very 
rarest species made little difference, because measures of functional 
composition and diversity calculated from communities with all spe-
cies were strongly correlated with measures from communities with 
the rare species excluded (all Pearson correlation coefficients >0.995).

http://www.github.com/TobiasRoth/detectionfilter
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The detection probability for a species with average trait values 
and an average number of occurrences (i.e. the number of plots a spe-
cies was estimated to occur in), at average elevation, was 0.94. This 
value corresponds to the back-transformed intercept of the linear 
model that predicts species’ detectabilities (Table 2). While detec-
tion probability decreased for plants with larger specific leaf area, it 
increased for plants with larger canopy height and higher seed mass. 
The effect of height on detection is clear, and most of the larger 
species (bushes and trees) had average detection probabilities >.95. 
A good example of how SLA affected detection probability is Sedum 
acre: while it is a relatively short and small-seeded species, it is still 
rather easy to detect (average detection probability = .92) due to its 
long-lived, fleshy leaves with low specific leaf area. The differences 
in detection between Convallaria majalis (average detection probabil-
ity = .95) and Allium ursinum (average detection probability = .67) are 
also instructive: while canopy height and specific leaf area are simi-
lar for the two species, Convallaria majalis has conspicuous fruits with 
a few large seeds, in contrast to the inconspicuous fruits and small 
seeds of Allium ursinum. Compared to the functional traits, however, 
elevation and the number of occurrences (i.e. how widespread a spe-
cies was) were stronger predictors of detection probability (Table 2). In 
general, species that were more widespread or occurred on average at 
higher elevations were more likely to be detected.

On average, 94.8% of the species that were estimated to occur in 
a community were actually observed. The proportion of observed spe-
cies was highest at around 900 m and decreased with increasing ele-
vation (Figure 2a). We also examined the characteristics of the species 
that were predicted to be missing from each community, and calcu-
lated the total occurrence and mean elevation of occurrence for each 
species. We then plotted the average characteristics (total occurrence 
and average elevation) of the observed and missing species, for each 
community, against elevation. Up to about 750 m, the missing spe-
cies, that is those that remained undetected within a community, were 

generally species that occurred at lower elevations (Figure 2b) or that 
were rarer (i.e. occurred on fewer plots; Figure 2c) than the observed 
species. The species that most often remained undetected in commu-
nities below 750 m were Buglossoides arvensis, a weed of arable land, 
and Helianthus tuberosus, a currently spreading invasive species that 
flowers late. In contrast, above 1,000 m the missing species tended 
to be mostly those that occur at higher elevations than the observed 
species (Figure 2b), and in communities around 1,000 m, the missing 
species tended to be quite widespread ones that can occur at a range 
of elevations. The species that most often remained undetected in 
communities between 750 m and 1,250 m was Descurainia sophia, a 
ruderal plant of fields and dry rock faces.

The bias caused by detection filtering was relatively weak for 
measures of functional composition (Figure 3) but had larger effects 
on some functional diversity metrics (Figure 4). We believe that a 
study along an elevational gradient should be able to detect environ-
mentally induced differences in functional composition or diversity 
that occur across a 100-m elevation difference. If detection filter-
ing has a larger effect on functional composition than the effect of 
100-m elevation difference, we consider that it could obscure trait–
environment relationships. We therefore (arbitrarily) defined detec-
tion filtering to have a substantial effect if it caused a larger change in 
functional composition/diversity than we observed per 100 m along 
the elevational gradient. Following this definition, imperfect detec-
tion biased the estimates of community mean specific leaf area in 
17.1% of the studied communities (Figure 3a), biased the estimates 
of community mean canopy height in 2.8% of communities (Figure 3b) 
and biased the estimates of community mean seed mass in 31.5% of 
communities (Figure 3c). Following the same definition, the effect of 
removing rare (<4 observations) species was weaker: removing rare 
species was relevant in only 0.6% of communities for SLA, in 0.3% 
of communities for canopy height, in 1.4% of communities for seed 
mass, in 3.3% of communities for functional richness and in 13% of 
communities for functional packing.

Observed and detection-corrected estimates of community means 
of specific leaf area, canopy height and seed mass were all strongly 
correlated (all r > .99). For functional diversity, we found that detec-
tion filtering mainly affected functional packing and not functional 
richness: detection filtering affected functional richness in only 7.2% 
of communities but affected functional packing in 95.6% of communi-
ties. Still, correlations between estimates of observed and detection-
corrected communities were high (FRic: r = .997, mnnd: r = .987). 
Furthermore, random removal of species from communities led to a 
similar decline in functional packing as compared to the effect of de-
tection filtering (see Figure 3.3 in Data S3).

Regardless of whether we used detection-corrected or observed 
meta-community data, we still found the same pattern of change in 
functional diversity and composition along the elevational gradient. 
Community mean values of SLA, height and seed size declined along 
the elevational gradient, with the steepest decline occurring for can-
opy height (Figure 3). The response of functional diversity metrics 
was less clear: while functional richness showed a rather continuous 
decline along the elevation gradient, the peak of functional packing 

TABLE  2 Results from linear model predicting species’ detection 
probabilities (logit-transformed) from the functional traits, the 
number of occurrences and the average elevation of occurrence of a 
species. Given are the results for the 1,296 plant species for which 
detection-corrected occurrences were estimated. Effect sizes are the 
estimated intercepts and slopes, SE is the standard error of the 
estimates, and the p-value is for the null hypothesis that the variables 
had no effect on species’ detection probability. Note that the results 
are based on the normalized log-transformed variable data and thus 
allow for direct comparison of effect sizes

Intercept and predictor 
variables Effect size SE p-value

Intercept 2.795 0.082

Specific leaf area −0.165 0.080 .040

Canopy height 0.219 0.092 .017

Seed mass 0.386 0.083 <.001

Number of occurrences 0.610 0.077 <.001

Average elevation of 
occurrence

0.564 0.097 <.001
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(i.e. smallest mean nearest neighbour distance) occurred at around 
1,700 m (Figure 4a,b). The peak in functional packing coincided with 
the peak in the number of species in a community (Figure 4c).

4  | DISCUSSION

One of the greatest challenges when using ecological data is imper-
fect detection of species (Kéry & Schmid, 2004; Yoccoz et al., 2001). 
This is not only a problem for animals but is also an issue in studies 
on plants (Chen et al., 2013). Perfect detection should not be as-
sumed in plant surveys, even for easily recognizable species under 

ideal survey conditions (Ng & Driscoll, 2015). Although there have 
been great efforts to account for imperfect detection in animal and 
plant surveys during the last decade (Bailey, MacKenzie, & Nichols, 
2013; Chen et al., 2013; Kéry & Royle, 2016), imperfect detection 
has been largely neglected in community ecology research until re-
cently (Cardoso et al., 2014; Jarzyna & Jetz, 2016; Mihaljevic et al., 
2015; Tingley, Ruiz-Gutierrez, Wilkerson, Howell, & Siegel, 2016). 
Our study shows that imperfect detection may bias estimation of 
functional diversity in particular. We also show that hierarchical 
models can easily be applied to estimate detection filtering, even in 
cases where a high proportion of species are only rarely observed 
(Figure 1).

F IGURE  2  (a) Change in the observed proportion of occurring species plotted against community elevation. (b) Mean elevation of species 
occurrence averaged for observed species (red points) and for species that were estimated to occur in a community but that were not detected 
(i.e. overlooked species, blue points), plotted against community elevation. (c) Number of occurrences per species averaged for observed species 
(red points) and for overlooked species (blue points), plotted against community elevation. Smoothed curves are predictions from generalized 
additive models (GAMs)
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F IGURE  3 Change in community means (CMs) of log-transformed and normalized (z-score) trait values along the elevational gradient for the 
three functional traits: (a) specific leaf area, (b) canopy height and (c) seed mass. Points give CMs of the 362 observed communities that are not 
corrected for detection filtering. Coloured points indicate communities where imperfect detection affected estimates of CMs more than the 
change in community composition we observed per 100 m along the elevational gradient (red points: observed CMs are lower than detection-
corrected CMs; blue points: observed CMs are larger than detection-corrected CMs). The lines represent the predictions from the generalized 
additive model (GAM) applied to the observed communities (dotted line) and to the detection-corrected communities (solid line)
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Species detectability depended on all three functional traits tested, 
meaning that short species with small seeds and high specific leaf area 
(SLA) values were less likely to be detected. Lower values of SLA are 
related to longer leaf life span (Reich, Walters, & Ellsworth, 1997), 
and leaves with a longer life span are likely to be present during both 
spring and autumn surveys, meaning that they may be more likely to 
be detected than leaves with short life spans. The reasons for the cor-
relation between seed size and detectability are less clear. However, 
small-seeded species are usually ruderals with a high dispersal ability 
but short life span (Diaz et al., 2016). These plants may have more-
variable population dynamics, consistent with occurring in relatively 
ephemeral habitats and making the species harder to detect. Finally, 
the correlation between canopy height and detectability of species is 
well known (Chen et al., 2013), as short species are less visible than 
large ones.

4.1 | Bias from nonrandom under-sampling

Our results suggest that imperfect detection may bias measures 
of some of the most commonly used functional traits of plants 
(Götzenberger et al., 2012). While many measures of functional di-
versity have been shown to be sensitive to random under-sampling, 
nonrandom under-sampling is expected to cause even more bias (van 
der Plas et al., 2017). Recent work on plant strategies shows two main 
axes of variation: a resource economics axis (related to specific leaf 
area) and a size axis related to height and seed size (Diaz et al., 2016; 
Westoby, 1998). The traits related to these axes are important predic-
tors of plant responses to the environment and of effects on ecosys-
tem function (Lavorel et al., 2011). Our results suggest that detection 
filtering may lead to underestimation of the occurrence of ruderal 
(short, small seeded) and fast-growing species, which could mean 
that functionally important species are overlooked. Detection filtering 

might bias functional trait proxies for ecosystem functions related to 
productivity and fast nutrient cycling, which are promoted by species 
with high SLA (Lavorel et al., 2011) or proxies for dispersal functions if 
these are promoted by small-seeded species.

Nevertheless, detection filtering only had marginal effects on func-
tional composition and diversity in our study. Inclusion of the missed 
species mainly increased functional packing of communities (lower 
mean nearest neighbour distance of detection-corrected communities 
in Figure 4b) but hardly affected functional richness (Figure 4a). This 
suggests that the missing species were similar in terms of their combi-
nation of leaf-height-seed traits to the species that had been detected 
in that community. Indeed, detection effects on functional packing 
disappeared when we randomly removed species from detection-
corrected communities until they contained the same number of 
species as the observed communities. The functional similarity of ob-
served and missed species is also evident when looking at the three 
traits separately, where the missed species hardly affected the com-
munity means of the three functional traits (Figure 3). This suggests 
that many functional trait metrics are relatively robust to detection 
filtering. However, care should be taken when estimating measures 
of functional packing as these metrics are sensitive to species de-
tection. Even if the bias caused by missed species is not greater than 
that caused by randomly missing species, it is still important to know 
whether a lot of species are likely to be missing or not and whether the 
proportion of missed species is similar between communities.

4.2 | Applicability and adaptability of the approach

Overall, high detection probabilities in our study minimized the po-
tential for detection filtering to be a major source of error. In cases 
where survey and sampling methods lead to lower detection rates or 
a species group has lower detectability than plants (e.g. birds), greater 

F IGURE  4 Changes in (a) functional richness (convex hull volume of the three functional dimensions specific leaf area, canopy height and 
seed mass), (b) functional packing (mean nearest neighbour distance) and (c) taxonomic diversity (number of species) along the elevational 
gradient. Points give the estimates of the 362 observed communities that are not corrected for detection filtering. Coloured points indicate 
communities where imperfect detection affected estimates more than the change in community diversity we observed per 100 m along the 
elevational gradient (red points: observed estimates are below the detection-corrected estimates; blue points: observed estimates are above 
the detection-corrected estimates). The lines represent the predictions from the generalized additive model (GAM) applied to the observed 
communities (dotted lines) and to the detection-corrected communities (solid line)
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potential for inferential errors exists, and correcting functional diver-
sity metrics for detection filtering is likely to be even more important. 
Our approach provides a method to correct functional diversity and 
composition metrics for detection filtering. As true occupancy can 
be estimated independently from detection probability using occu-
pancy models (MacKenzie & Kendall, 2002), the derived estimates of 
functional composition and diversity, obtained from these corrected 
occupancy estimators, will be less biased by imperfect detection 
(Iknayan et al., 2014). This means that where repeated surveys have 
been carried out, it is possible to correct functional composition and 
diversity measures using the approach outlined here. However, meth-
ods to estimate detection probability are also available for single-visit 
surveys (Guillera-Arroita, 2017). Examples include time-to-detection 
methods (Bornand, Kéry, Bueche, & Fischer, 2014; Garrard, Bekessy, 
McCarthy, & Wintle, 2008; Guillera-Arroita, Morgan, Ridout, & Linkie, 
2011). Like occupancy models, these methods provide an estimate of 
true occupancy. It should thus be possible to adopt the approach out-
lined here to these methods. Furthermore, methods such as distance 
sampling (Buckland, Anderson, Burnham, & Laake, 2005) or N-mixture 
models allow estimation of detection probability from abundance data 
(Royle, 2004).

4.3 | Effect of species distribution

Our results also suggest that attributes related to the distribution 
of a species are important in determining its detection probability 
(Table 2). The number of plots on which a species occurred corre-
lated with detection probability, meaning that widespread species had 
generally higher detectabilities than species with restricted distribu-
tions. Species with a restricted distribution are often also locally rare 
(Gaston & Lawton, 1990), and it is well established that local abun-
dance is a key variable predicting detection probability (Chen et al., 
2013; Royle & Nichols, 2003). Note, however, that in communities 
at mid-elevations, at around 1,000 m, missed species were on aver-
age more widespread than observed species. Ruderals that can cope 
with human disturbance at low elevations but also with comparatively 
low temperatures at higher elevations might be relatively rare at mid-
elevations, because disturbed habitat is rare at these elevations. As a 
consequence, relatively widespread species might be difficult to detect 
at mid-elevations. Taking abundance into account in indices of func-
tional composition, that is by calculating community-weighted mean 
functional traits, offers promising insights into how species respond to 
environmental changes (de Bello, Leps, Lavorel, & Moretti, 2007), and 
community-weighted means are often good predictors of ecosystem 
function. As the probability of detecting a species is positively related 
to its abundance (Iknayan et al., 2014), using N-mixture models to infer 
how detection filtering alters abundance-weighted measures of func-
tional diversity seems an important avenue for future research.

4.4 | Elevation and effects of imperfect detectability

More surprisingly, the species with high average detection prob-
ability tended to be those occurring at higher altitudes. Although the 

vegetation period is shorter at higher elevations, the period between 
first and second visit was about 78 days independent of elevation. 
We thus speculate that detection probabilities of species increased 
with elevation because the two visits spanned an increasing propor-
tion of the vegetation period and that it was thus less likely to miss 
early or late flowering species. Although detection probabilities in-
creased with elevation for individual species, at the community level, a 
lower proportion of the total species were detected at high elevation 
(Figure 2a). This apparent contradiction might be explained by the fact 
that the species level model is already corrected for the frequency of 
the species, as we included the number of occurrences of each species 
alongside the average elevation of occurrence. However, the species 
that occur at high elevations tended to be rarer (occur in fewer plots). 
This means that the decrease in community-level detectability with 
elevation (Figure 2a) could be driven by an increase in the proportion 
of rare species in high elevation communities.

There was only a weak indication that imperfect detection would 
change conclusions about how altitude affected functional composi-
tion and diversity. Similar to the effects at the species level, at low 
elevations, community means of height and seed size were slightly 
overestimated and SLA was slightly underestimated due to imperfect 
detection. Apparently, the botanists that walked the 2.5-km transects 
detected more of the large species and fewer of the short and small-
seeded species. At high elevations, taller species with higher SLA and 
higher seed mass were slightly more likely to be missed (Figure 3). 
Species with this trait combination are not well adapted to high ele-
vation environments (von Arx, Edwards, & Dietz, 2006) and thus may 
occur only in sheltered places, in dwarf forms, as seedlings, as young 
plants or simply in lower numbers. This could be one reason why the 
detection probabilities of these species were lower compared to other 
species in alpine environments. However, many studies are interested 
in the relative degree of change in functional composition/diversity 
along an environmental gradient, and in this case, it is mainly import-
ant that detection filtering does not change the correlation between 
observed and predicted values. The correlation between observed and 
detection-corrected measures of functional composition and diversity 
should be high if the effect of imperfect detection is constant across 
sites and if there are large differences among sites along the eleva-
tional gradient. For all tested measures of functional composition and 
diversity, we found correlations of >.99. These high positive correla-
tions suggest that differences in the functional composition between 
sites along elevations are much more important than effects due to 
detection filtering. Thus, detection filtering did not obscure trait–en-
vironment relationships in our study, which is encouraging because 
many studies assessing trait–environment relationships have not cor-
rected for imperfect detection. However, to compare functional com-
position values between studies with different sampling designs or 
sampling intensity, it might be important to correct for the bias caused 
by detection filtering.

Elevation was generally a major driver of functional composition 
and diversity in our study. Communities changed from containing larger 
plants with heavier seeds and higher specific leaf area in the lowlands 
to containing smaller plants with lighter seeds and lower specific leaf 
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area (suggesting leafs with longer life span; Westoby, 1998) in alpine 
environments. These trends are consistent with earlier studies (Dubuis 
et al., 2013; Qi et al., 2015) and are likely to be caused by alpine plants 
adopting a more conservative growth strategy (von Arx et al., 2006). 
For example, alpine plants should allocate a higher proportion of their 
resources to vegetative growth (e.g. into leaves with smaller SLA), and 
because of trade-offs this may be reflected in reduced reproductive 
effort (e.g. the production of smaller seeds; von Arx et al., 2006; Nobis 
& Schweingruber, 2013). These gradual and consistent trends along 
the entire elevational gradient also suggest that climate warming will 
reduce populations of plants with slow growth strategies.

Patterns of functional traits can help to elucidate the underlying 
mechanisms of community assembly (Janecek et al., 2013; Mayfield 
et al., 2010), and functional diversity provides an indicator of ecosystem 
functioning (Diaz et al., 2007). Using traits as indicators of functioning 
in biodiversity experiments (e.g. Flynn, Mirotchnick, Jain, Palmer, & 
Naeem, 2011) is not likely to be biased by problems of imperfect de-
tection. However, because ecosystems are managed and ecosystem 
services are delivered at landscape scales (Quijas et al., 2012), and be-
cause manipulative experiments are rarely feasible at such large scales 
(Barbaro, Giffard, Charbonnier, van Halder, & Brockerhoff, 2014), obser-
vational approaches using functional traits to map services offer much 
promise (de Bello et al., 2010; Violle, Reich, Pacala, Enquist, & Kattge, 
2014). In these cases, imperfect detection may be the rule rather than 
the exception (Chen et al., 2013), and our results suggest that key func-
tional traits are correlated with detection probabilities, meaning that 
measures of functional composition and diversity could be biased by 
detection filtering. Our analysis suggests this is not a major problem 
for functional composition, although this may or may not hold in other 
studies, but that diversity metrics based on the degree of packing of 
species in functional space are underestimated by detection filtering. 
Future studies should therefore consider correcting functional diver-
sity measures for imperfect detection. Our approach provides a simple 
method to do this for a large number of species and communities.
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