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Abstract
1.	 Functional	traits	are	increasingly	being	used	to	understand	the	response	of	species	to	

environmental change and their effects on ecosystem functioning. However, some 
ecologically	important	traits,	such	as	plant	height,	influence	the	probability	of	species	
detection	during	field	surveys.	Imperfect	detection	of	species	could	therefore	bias	
measures	of	functional	trait	composition	and	diversity,	leading	to	incorrect	estimates	
of	trait–environment	relationships	due	to	a	process	of	“detection	filtering.”	The	im-
portance	of	detection	filtering	for	functional	ecological	studies	remains	unknown.

2. We used hierarchical models that account for detection filtering to analyse data on 
1,296	 vascular	 plant	 species	 sampled	 in	 362	 1-km2	 plots,	 distributed	 along	 a	
2,460-m	elevational	gradient	in	Central	Europe.	We	examined	how	detection	filter-
ing	altered	measures	of	 functional	diversity	 (multivariate	 functional	 richness	and	
packing)	and	composition	(community	means	of	three	traits).	We	also	determined	
whether the strength of detection filtering varied over the gradient, to determine 
whether	detection	filtering	biased	trait–environment	relationships.

3.	 Species	 detectability	was	 correlated	with	 all	 three	 functional	 traits	 tested	 in	 this	
study,	meaning	that	short	species	with	small	seeds	and	high	specific	leaf	area	values	
were	less	likely	to	be	detected.	This	suggests	that	imperfect	detection	has	the	po-
tential	to	bias	measures	of	functional	composition.	Generally,	measures	of	functional	
composition	were	not	strongly	affected	by	detection	filtering,	but	functional	packing	
was underestimated when detection filtering was not accounted for. In addition to 
the	traits,	distributional	characteristics	were	important;	rare	species	and	species	oc-
curring	mainly	at	low	elevations	tended	to	have	lower	detection	probabilities.

4.	 Overall,	detection	filtering	did	not	strongly	bias	trait–environment	relationships	be-
cause	the	effects	of	the	environment	on	functional	composition	and	diversity	were	
larger than the effects of detection.

5.	 Our	results	suggest	that	many	measures	of	functional	composition	and	diversity	are	
robust	 to	 detection	 filtering,	 but	 some	 are	 likely	 biased.	 Functional	 ecologists	
should	consider	correcting	for	 imperfect	detection,	and	our	approach	provides	a	
simple	method	to	do	so	for	a	wide	range	of	datasets.
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1  | INTRODUCTION

Due	to	constraints	 in	field	surveys,	 it	 is	usually	not	possible	to	ob-
tain	a	complete	list	of	species	for	a	given	community	at	a	given	time	
(Cardoso,	Rigal,	Borges,	Carvalho,	&	Faith,	2014).	 Imperfect	detec-
tion	of	species	 is	therefore	an	important	source	of	bias	when	com-
paring	species	richness	among	communities	 (Kéry	&	Schmid,	2004;	
Yoccoz,	 Nichols,	 &	 Boulinier,	 2001).	 Recent	 studies	 have	 asked	
whether	 imperfect	 detection	 might	 also	 bias	 other	 important	 di-
mensions	of	biodiversity,	such	as	functional	diversity	(Cardoso	et	al.,	
2014;	Mihaljevic,	Joseph,	&	Johnson,	2015;	van	der	Plas,	van	Klink,	
Manning,	Olff,	&	Fischer,	2017).	Jarzyna	and	Jetz	(2016)	suggested	
that	 detectability	 depends	 not	 only	 on	 site	 and	 survey	 conditions,	
but	also	on	characteristics	of	individual	species,	that	is	on	their	traits.	
As	measuring	 the	 diversity	 or	 composition	 of	 species	 traits	within	
communities	is	at	the	core	of	functional	ecology,	imperfect	detection	
could	be	of	particular	 concern	 if	detectabilities	are	correlated	with	
certain	species	traits.

Some	functional	traits	likely	influence	the	probability	of	detecting	
species	during	 field	 surveys.	For	example,	plant	height	 is	 commonly	
used	in	functional	diversity	research	(Götzenberger	et	al.,	2012),	and	
larger	 plant	 species	 are	 likely	more	 detectable	 than	 smaller	 species	
(Chen,	 Kéry,	 Plattner,	 Ma,	 &	 Gardner,	 2013).	 Therefore,	 imperfect	
detection	may	 “filter”	 the	 smaller	 species,	or	 species	with	a	 specific	
growth	habit,	from	a	dataset,	a	process	that	we	term	detection	filter-
ing.	Of	course,	detection	will	also	depend	on	the	type	of	community:	
in	a	heavily	grazed	grassland,	all	species	are	low	growing,	and	there-
fore,	short	species	are	more	likely	to	be	detected	than	in	an	ungrazed	
system.	We	 define	 detection	 filtering	 as	 a	 methodological	 process	
that	 selects	which	species	are	observed	 in	a	community,	depending	
on	their	functional	traits.	Thus,	we	distinguish	detection	filtering	from	
ecological	filtering	(or	assembly	rules	sensu	Keddy,	1992),	caused	by	
dispersal,	 environmental	 conditions	 or	 biotic	 interactions,	which	 se-
lects	for	or	against	species	from	the	regional	species	pool	depending	
on	their	functional	traits.	The	detection	filter	could	operate	in	a	similar	
way to ecological filters by causing a signature of nonrandom func-
tional	composition.

This	view	of	community	assembly	suggests	a	hierarchical	process	
in	which	 the	 species	observed	 in	 a	 community	depends	on	a	 series	
of	ecological	and	detection	filters.	Hierarchical	models	(Kéry	&	Royle,	
2016)	 could	 allow	 this	 process	 to	 be	modelled.	Hierarchical	models	
contain two or more linear models that are conditionally related to 
each	 other;	 see	 Kéry	 and	 Royle	 (2016)	 for	 a	 detailed	 discussion	 of	
the	framework	of	hierarchical	models	that	can	be	fitted	to	presence/
absence	 or	 abundance	 data,	 accounting	 for	 imperfect	 detection.	
Guillera-	Arroita	 (2017)	 provides	 a	 recent	 review,	 in	 which	 Figure	1	
gives an overview of model structure and data needs of hierarchical 
models	that	account	for	imperfect	detection.

To	functionally	characterize	communities,	occurrence	data	(occur-
rences	 of	 the	 species	 recorded	 in	 a	 set	 of	 sampling	 units)	 and	 trait	
data	(a	set	of	traits	measured	for	the	observed	species)	are	typically	
combined	to	calculate	metrics	of	functional	diversity	or	composition.	
Often	the	trait	data	contain	many	missing	values	(Sandel	et	al.,	2015).	

Given	that	frequently	measured	species	often	have	different	trait	val-
ues	 from	 rarely	measured	 species	 (Sandel	 et	al.,	 2015),	 gaps	 in	 trait	
data	are	likely	nonrandom.	Consequently,	there	is	increasing	concern	
that	metrics	of	functional	diversity	are	sensitive	to	gaps	in	the	trait	data	
(Májeková	et	al.,	2016;	Pakeman,	2014),	and	robust	methodologies	to	
impute	missing	values	 in	trait	data	have	been	developed	(Stekhoven	
& Buhlmann, 2012; Swenson, 2014). In contrast, only a few studies 
have investigated whether metrics of functional diversity are affected 
by	missing	species	in	the	occurrence	data	(van	der	Plas	et	al.,	2017).	
A	reason	for	this	might	be	that	missing	species	lead	to	false	absences	
(i.e.	zeroes	in	the	occurrence	data),	which	are	less	obvious	than	gaps	
in	trait	data.	Nonetheless,	the	consequences	of	missing	species	in	oc-
currence data might be similar to those of missing trait values because 
in	both	cases,	a	nonrandom	selection	of	species	is	excluded	from	the	
calculation of functional diversity measures.

In	 this	 study,	 we	 therefore	 ask	whether	 false	 absences	 of	 spe-
cies in the occurrence data may cause a signature of nonrandom 
functional	 composition,	 similar	 to	 ecological	 filtering.	 If	 overlooking	
species	during	sampling	results	 in	consistently	 lower	or	higher	func-
tional	diversity,	or	in	a	consistent	change	in	composition	values,	then	
comparative	studies	may	not	be	strongly	affected	(van	der	Plas	et	al.,	
2017). However, if these biases are stronger in certain environmental 
conditions, then detection filtering could affect studies that correlate 
functional	 diversity/composition	 with	 environmental	 gradients	 (e.g.	
Soliveres	&	Maestre,	2014),	as	well	as	observational	studies	that	use	
functional	 composition	 to	 predict	 ecosystem	 function	 metrics	 (e.g.	
Allan	et	al.,	2015).	We	propose	hierarchical	models	as	a	ready-	to-	use	
method	to	estimate	the	missing	species	in	occurrence	data.

To	 test	 this,	we	analysed	a	 large	dataset	 containing	occurrences	
of	 plant	 species	 in	 362	 1-	km2	 plots	 from	 the	 Swiss	 Biodiversity	

F IGURE  1 Results	of	applying	the	method	to	meta-	community	
data	where	27%	of	100	species	were	observed	in	less	than	10%	
of	200	sites.	Community	means	(CMs)	of	true	communities	(open	
orange	dots,	only	known	because	data	were	simulated),	CMs	of	
observed	communities	(black	dots)	and	CMs	from	detection-	
corrected	communities	(red	+)	along	elevational	gradient.	The	lines	
represent	the	regression	lines	from	linear	models	with	CMs	as	
dependent	variable	and	the	gradient	as	predictor
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Monitoring	programme	(BDM).	We	estimated	average	detection	prob-
abilities	 for	1,296	plant	species	and	 tested	whether	species-	specific	
detection	 probabilities	were	 correlated	with	 certain	 functional	 trait	
values.	Detection	filtering	will	occur	if	detection	probability	depends	
on	the	expression	of	one	or	more	functional	traits.	We	then	compared	
measures	 of	 the	 functional	 composition	 and	 diversity	 of	 observed	
communities with the same measures calculated for communities with 
imputed	missed	species	(i.e.	detection-	corrected	communities).	To	test	
whether	detection	filtering	obscured	trait–environment	relationships,	
we	 examined	 how	 the	 difference	 between	 detection-	corrected	 and	
observed communities changed along an elevational gradient. We 
focused	 on	 three	 functional	 traits	 that	 are	 whole-	plant	 properties	
(Laughlin,	2014;	Westoby,	1998):	specific	leaf	area	(ratio	of	fresh	leaf	
area	 to	 leaf	dry	mass),	plant	canopy	height	and	seed	mass.	We	also	
determined	the	 impact	of	detection	 filtering	on	the	 functional	com-
position	of	the	communities,	measured	as	community	means	of	single	
traits.	We	used	trait	means	rather	than	the	more	commonly	employed	
community- weighted means because we do not have abundance data 
for	the	species.	We	also	calculated	the	effect	of	detection	filtering	on	
two	functional	diversity	measures	that	describe	the	functional	space	
of	plant	 communities	 in	 terms	of	 filling	 (measured	as	 the	 functional	
richness)	and	packing	(measured	as	the	mean	nearest	neighbour	dis-
tance;	Laliberte	&	Legendre,	2010;	Swenson	&	Weiser,	2014).

2  | MATERIALS AND METHODS

2.1 | Study area and plant data

Data	collection	took	place	between	2010	and	2014	within	the	Swiss	
Biodiversity	 Monitoring	 (BDM)	 scheme	 (Weber,	 Hintermann,	 &	
Zangger,	2004).	A	total	of	428	study	plots	of	1	km2 were distributed 
in	 a	 regular	 grid	 across	 the	 whole	 of	 Switzerland.	 Each	 year,	 one-	
fifth	of	the	sample	plots	were	surveyed.	These	plots	were	chosen	so	
that	 they	constituted	a	 regularly	spaced	subsample	of	all	plots.	The	
botanists	performing	the	surveys	received	special	training	to	reduce	
among-	observer	 variation.	 The	 presence	 or	 absence	 of	 2,674	 plant	
taxa	was	recorded	in	each	plot,	along	a	2.5-	km	transect	that	followed	
existing	trails	wherever	possible.	If	no	trails	existed,	surveyors	marked	
the	transect	route	in	the	field	and	plotted	it	on	a	map.	At	a	sample	plot,	
the	transect	was	 inspected	once	 in	spring	and	again	 in	summer,	en-
suring	that	data	collection	spanned	variation	in	flowering	phenologies	
(Pearman	&	Weber,	2007).	Exceptions	were	made	for	sample	plots	at	
high	elevations,	where	only	one	inspection	per	field	season	was	con-
ducted	because	of	the	short	growing	period	(however,	we	excluded	
these	plots	from	analyses,	see	below).	During	each	inspection,	a	sur-
veyor	 recorded	 all	 plant	 species	within	 2.5	m	 of	 the	 transect	while	
walking	it	in	both	directions	at	a	slow	speed	of	approximately	3	km/h.

The	 robustness	of	 the	 survey	methods	was	 assessed	 in	 a	 previ-
ous	 study	 (Plattner,	Weber,	 &	 Birrer,	 2004)	 in	which	 two	 botanists	
independently	recorded	23	transects.	The	mean	species	richness	on	
these	transects	was	250	species.	The	number	of	species	recorded	by	
the	 two	 botanists	 differed	 by	 19.7	±	4.9	 species	 (M ± SE)	 per	 tran-
sect,	 which	 corresponds	 to	 a	 relative	 surveyor	 effect	 of	 7.9%.	 An	

unpublished	 study	was	designed	 to	quantify	 the	bias	 introduced	by	
choosing	transects	that	follow	existing	trails.	Species	were	recorded	in	
15	1-	km2	plots,	using	randomly	placed	transects	of	2.5	km	rather	than	
the	regular	transects.	On	average,	10%	more	species	were	recorded	in	
the	plots	when	the	regular	transects	were	followed,	compared	to	the	
randomly	placed	transects.	 In	general,	 ruderal	and	grassland	species	
tended	to	be	more	common	along	the	regular	trails,	while	species	of	
wet meadows tended to be more common on the random transects. 
However,	estimated	indicator	values,	derived	from	expert	knowledge	
(values	1–5	in	0.5	steps)	for	Swiss	plants	(Landolt	et	al.,	2010),	did	not	
strongly	differ	between	regular	and	random	transects.	The	average	in-
dicator	values	for	 light,	moisture,	nutrients,	reaction	(content	of	free	
H-	ions	in	the	soil,	from	acid	soils	to	soils	rich	in	bases)	or	temperature	
of	recorded	species	did	not	differ	significantly	between	the	types	of	
transects,	indicating	that	the	regular	transects	capture	well	the	func-
tional	composition	of	the	plots.

We	 only	 analysed	 plots	 that	 had	 been	visited	 twice	 in	 the	year	
they	were	 surveyed,	 that	 is	we	 removed	 the	high	Alpine	plots.	This	
resulted	in	a	sample	of	362	study	plots.	Median	elevation	within	plots	
ranged	from	250	m	to	2,710	m	(a.s.l.),	while	the	mean	plot	elevation	
was	 1,104	m	±	612	 (SD).	On	 average,	 there	was	 a	 gap	 of	 77.6	days	
between	the	first	and	the	second	visit	to	the	sample	plots,	and	this	dif-
ference	was	relatively	stable	across	the	elevational	gradient	(the	num-
ber	of	days	between	first	and	second	visits	decreased	by	0.02	days	per	
100 m along the elevational gradient, linear model, p = .905).

2.2 | Trait data

We	 used	 the	 leaf-	height-	seed	 plant	 ecology	 strategy	 scheme	
(Westoby,	 1998)	 to	 focus	 our	 study	 on	 traits	 from	multiple	 organs	
(Laughlin,	2014;	Westoby,	1998).	We	analysed	 three	 traits:	 specific	
leaf	area	(ratio	of	fresh	leaf	area	to	leaf	dry	mass,	SLA),	canopy	height	
(CH)	and	seed	mass	(SM).	Data	for	these	traits	came	from	the	LEDA	
trait	database	 (Kleyer	et	al.,	2008).	The	traits	were	partly	correlated	
(SLA	 and	 CH:	 r	=	−.18;	 SLA	 SM:	 r	=	−.07;	 CH	 and	 SM:	 r = .31, all 
n = 1,296).

We	were	able	to	find	trait	data	for	most	of	the	species,	but	some	
trait	values	were	missing	(Table	1).	If	the	species	with	missing	trait	val-
ues	are	not	a	random	subset	of	all	species,	ignoring	those	species	will	
lead	to	biased	functional	diversity	measures	(Pakeman,	2014;	Penone	
et	al.,	2014).	The	trait	coverage	at	the	species	level	(i.e.	the	percent-
age	of	species	with	available	trait	values)	was	lower	than	the	coverage	
at	 the	observation	 level	 (the	percentage	of	observations	with	avail-
able	trait	values;	Table	1).	This	suggests	that	rare	species	were	more	
likely	 to	have	missing	 trait	values	 than	 common	 species.	Therefore,	
removing	species	with	missing	 trait	values	 from	the	analyses	would	
be	similar	to	removing	rare	species	from	the	analyses,	which	is	likely	
to	bias	the	results	(Lyons	&	Schwartz,	2001).	To	avoid	this	source	of	
bias,	we	imputed	the	missing	trait	values	and	included	all	species	 in	
the analyses.

Missing	trait	values	were	imputed	with	random	forest	estimation	
(R	 package	 missForest	 version	 1.4;	 Stekhoven	 &	 Buhlmann,	 2012).	
Random	 forests	 constitute	 a	 popular	 method	 for	 many	 machine	
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learning	tasks.	The	basis	of	this	analysis	is	decision	trees	that	are	con-
structed	using	 the	 species	with	 available	 trait	values.	Application	of	
random forest constructs and combines a multitude of such decision 
trees	 to	 increase	 predictive	 performance.	 To	 predict	 a	missing	 trait	
value,	random	forest	uses	extant	values	of	the	same	and	other	traits.	
Traditional	regression	techniques	could	also	be	used	for	this	analysis,	
but	decision	trees	allow	more	complex	models	to	be	fitted,	with	many	
interactive	and	nonlinear	effects	(Breiman,	2001).	This	approach	avoids	
bias	and	retains	relationships	among	traits	(Penone	et	al.,	2014).	The	
random	forest	approach	outperforms	other	approaches	for	estimating	
missing	values	 in	 trait	 databases	 (Penone	 et	al.,	 2014;	 Stekhoven	&	
Buhlmann, 2012).

After	 imputation,	 trait	 values	 were	 log-	transformed	 (Westoby,	
1998) and then normalized to a mean of 0 and a SD of 1, allowing for 
direct	comparison	among	traits	(Schielzeth,	2010).	Transformation	also	
improves	the	normality	of	trait	data	(Májeková	et	al.,	2016).

2.3 | Average species detection probabilities and 
detection- corrected meta- community

Hierarchical	 models	 may	 be	 expressed	 as	 f(y|z) because the out-
come of the random variable y	depends	on	the	outcome	of	the	ran-
dom variable z. While z could be the true occurrence or the true 
abundance	 of	 a	 species,	 y would be the observed occurrence or 
observed	abundance	of	that	species.	The	observed	occurrences	de-
pend	on	z	and	on	some	sort	of	measurement	error	 (Kéry	&	Royle,	
2016).	In	this	study,	we	used	the	single-	season	occupancy	model	of	
MacKenzie	 et	al.	 (2002),	which	 is	 a	 particular	 type	 of	 hierarchical	
model	in	which	the	observations	of	a	species	at	different	sites	(the	
data y)	depend	on	the	true	occurrence	for	the	species	at	the	sites	
(occurrence	z).	We	applied	 the	 single-	season	occupancy	model	 to	
each	recorded	species	separately.	Each	plot	was	visited	twice	dur-
ing a single year. However, note that in each year between 2010 
and	2014,	one-	fifth	of	the	plots	were	surveyed	and	thus	fieldwork	
lasted	 five	 years.	We	 therefore	 considered	 the	 five-	year	 span	 as	
the	 single	 closed	 season	 of	 the	 single-	season	 occupancy	 model.	
Note	 that	 the	 single-	season	 occupancy	 model	 assumes	 that	 it	 is	

impossible	to	observe	a	species	that	does	not	occur	in	a	site	(i.e.	no	
false	positives).	The	single-	season	occupancy	model	is	a	hierarchical	
model with the form f(yi,j|zi).	The	binary	vector	zi,	equal	in	length	to	
the	 number	 of	 surveyed	 sites	 (indexed	with	 i), describes the true 
occurrence	of	a	species	in	the	sites.	The	occupancy	model	that	ac-
counts	for	imperfect	detection	can	concisely	be	formulated	as

where	(1)	describes	occurrence,	zi,	as	a	random	variable	that	takes	the	
value	1	with	occurrence	probability	Ψi	and	where	(2)	is	the	methodo-
logical model that describes the data, yi,j, as a random variable that 
takes	the	value	1	(i.e.	a	species	is	observed	during	visit	j in site i) with 
probability	zipi,j.	Therefore,	pi,j	is	the	probability	of	detecting	species	i, 
assuming that it occurs in site j:	a	species	that	does	not	occur	cannot	
be	observed	(because	zi	=	0),	and	a	species	that	does	occur	will	be	ob-
served	with	detection	probability	pi,j.	Predictors	of	occurrence	prob-
ability Ψi	and	detection	probability	pi,j can then be added in a similar 
way as in standard generalized linear models. Because of the large 
elevational	gradient,	we	 incorporated	 linear	and	quadratic	 terms	for	
elevation	as	predictors	of	occurrence	probability	Ψi.	Elevation	should	
summarize the effects of several environmental variables that affect 
the	occurrence	of	the	species	(Chen	et	al.,	2013).	Because	detection	
probability	 likely	 depends	 on	 phenology,	 we	 used	 the	 survey	 date	
(linear	and	quadratic	terms)	as	predictors	of	detection	probability	pi,j 
(Chen	et	al.,	2013).

Note	 that	 instead	of	applying	 the	described	single-	season	occu-
pancy	model	to	each	of	the	observed	species	separately,	an	alternative	
approach	would	be	to	use	a	multispecies	occupancy	model	to	analyse	
the	single-	season	occupancy	of	all	species	together	in	a	single	model.	
Such	a	multispecies	occupancy	model	would	provide	a	more	synthetic	
framework	 to	assess	uncertainty	 in	estimates	and	 to	share	 informa-
tion	across	species	about	factors	that	might	affect	detection	(Iknayan,	
Tingley,	 Furnas,	 &	 Beissinger,	 2014).	 However,	 multispecies	 occu-
pancy	models	are	not	 implemented	 in	accessible	 software	packages	
and	we	therefore	decided	to	apply	single-	season	occupancy	models	to	
each	species	separately.	To	do	so,	we	used	the	function	occu of the R 
package	unmarked	(Fiske	&	Chandler,	2011).

We	estimated	 the	mean	detectability	 of	 a	 species	 by	 averaging,	
across	all	plots,	the	probabilities	of	detecting	it	during	at	least	one	of	
the	two	surveys,	using	detection	probabilities	from	the	function	occu. 
To	test	whether	the	average	species	detection	probability	was	related	
to	the	trait	values	of	the	species,	we	applied	a	linear	model	with	the	
logit- transformed [log( p

1− p
)]	 average	species	detection	probability	as	

the	dependent	variable	and	specific	leaf	area,	canopy	height	and	seed	
mass	as	predictor	variables.	Further,	widespread	species	are	often	lo-
cally	common,	making	them	easier	to	detect	than	sparsely	distributed	
species.	We	added	the	estimated	number	of	occupied	plots	per	spe-
cies	as	the	fourth	predictor	in	the	linear	model.	Finally,	we	included	the	
average	elevation	of	plots	occupied	by	a	species	as	the	fifth	predictor	
to	 test	whether	 detection	probability	varies	with	mean	elevation	of	
occurrence.

(1)zi∼Bernoulli(Ψi)

(2)yi,j∼Bernoulli(zipi,j)

TABLE  1 Variables	describing	trait	values	of	1,733	plant	species	
that were recorded between 2010 and 2014 on at least one of the 
362	plots	from	the	Swiss	Biodiversity	Monitoring	scheme.	Values	are	
given	as	medians	(ranges	in	brackets)	of	the	recorded	species.	Trait	
coverage	is	given	both	as	the	percentage	of	species	and	as	the	
percentage	of	observations	for	which	trait	values	were	available

Trait Median

Coverage 
species 
(%)

Coverage 
observations 
(%)

Specific	leaf	area:	
the ratio of fresh 
leaf area to leaf dry 
mass	(mm2/mg)

22.1	(2.6–150.6) 65 88

Canopy	height	(m) 0.3	(<0.1–65.0) 80 92

Seed	mass	(mg) 0.9	(<0.1–10’612.0) 70 87
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To	estimate	detection-	corrected	communities,	we	first	calculated	
the	occurrence	of	each	species	in	each	plot,	that	is	the	zi	values.	The	
function ranef	of	the	package	unmarked	was	used	to	estimate	poste-
rior distributions of each zi,	using	empirical	Bayes	methods,	and	the	
function bup	of	the	package	unmarked	was	used	to	extract	the	mode	
of	the	posterior	probability	for	each	zi.	After	applying	these	functions	
to	each	observed	species,	we	merged	the	zi	values	from	all	species	to	
obtain	the	estimated	detection-	corrected	meta-	community.	Note	that	
we	consider	the	assemblage	of	species	that	occurs	in	a	single	plot	as	
a community. Because zi,k describes 362 communities, we consider all 
plots	together	to	be	a	meta-	community,	following	the	terminology	of	
Kéry	and	Royle	(2016).

2.4 | Functional composition and diversity

We	calculated	functional	composition	and	diversity	from	the	observed	
and detection- corrected meta- community and inferred the effect of 
detection	filtering	on	functional	diversity	and	composition	along	the	
elevational	gradient.	To	estimate	community	functional	composition,	
we	calculated,	for	each	community,	the	mean	trait	value	across	all	spe-
cies	and	did	this	separately	for	each	of	the	three	functional	traits.	We	
quantified	 functional	diversity	 for	each	community	as	 the	multivari-
ate	convex	hull	volume,	that	is	functional	richness	(FRic).	The	convex	
hull	volume	is	a	multidimensional	volume	that	is	the	smallest	convex	
hull	enclosing	a	set	of	points	(i.e.	the	trait	data)	and	thus	refers	to	the	
amount	of	functional	space	filled	by	the	community	(Villeger,	Mason,	
&	Mouillot,	2008).	To	calculate	FRic,	we	used	the	function	convhulln 
of	 the	package	FD	 (Laliberte	&	Legendre,	 2010).	Communities	may	
fill	a	similar	amount	of	 the	 functional	space	but	could	differ	 in	how	
tightly	this	volume	 is	packed	by	species	 (Swenson	&	Weiser,	2014).	
Thus,	we	also	calculated	the	mean	nearest	neighbour	distance,	using	
the	 Euclidean	 distance	 between	 species	 in	 multivariate	 trait	 space	
(Laliberte	&	Legendre,	2010;	Swenson	&	Weiser,	2014).

2.5 | Simulation, worked example and R package 
detectionfilter

To	 make	 our	 approach	 more	 accessible,	 we	 applied	 the	 described	
method	 to	 simulated	 data.	 Note	 that	 extensive	 simulations	 to	 test	
the	performance	of	hierarchical	models	have	been	carried	out	else-
where	 (e.g.	 Bailey,	Hines,	Nichols,	&	MacKenzie,	 2007);	 so	 our	 aim	
was	merely	to	provide	a	worked	example	where	modelled	results	can	
be	compared	with	known	values	(i.e.	the	simulation	setting)	to	show	
that	 our	 approach	 is	 able	 to	 reduce	 bias	 in	 the	 estimation	 of	 func-
tional	composition	and	diversity.	We	borrowed	the	ideas	for	the	meta-	
community	simulation	from	chapter	11.2	in	Kéry	and	Royle	(2016)	and	
added	environmental	and	detection	filtering	to	this	simulation.	To	add	
environmental	filtering,	we	assumed	that	the	response	of	species	to	
a	gradient	(i.e.	the	slope	in	the	binomial	GLM	with	occurrence	as	de-
pendent	variable	and	gradient	as	predictor	variable)	depends	on	their	
functional	traits.	To	add	detection	filtering	to	the	simulation,	we	as-
sumed	that	the	average	detection	probability	of	a	species	depends	on	
its functional traits. See Data S1 where we describe the simulation in 

more	detail,	and	Data	S2	where	we	apply	our	method	to	the	simulated	
data.

We	bundled	data	and	all	R	scripts	into	the	R	package	detectionFilter, 
which	will	make	it	possible	to	reproduce	our	results	and	to	employ	the	
computational	methods	that	are	presented	in	this	article.	The	package	
can	be	downloaded	from	www.github.com/TobiasRoth/detectionfilter. 
This	package	contains	a	function	to	estimate	observed	meta-	community	
data from communities that are subject to ecological and detection fil-
tering,	the	analysed	plant	data	from	the	Swiss	Biodiversity	Monitoring,	
the	values	for	the	three	functional	traits	(specific	leaf	area,	canopy	height	
and	seed	mass)	for	the	recorded	species,	a	vignette	(i.e.	a	documentation	
to	an	R	package)	that	develops	the	ideas	behind	the	simulation	of	the	
meta-	community,	a	vignette	that	describes	the	workflow	to	estimate	the	
detection- corrected meta- community from observations, using the hier-
archical	models	implemented	in	the	R	package	umarked, and a vignette 
that	describes	all	the	analyses	conducted	in	this	project.	The	three	vi-
gnettes are also available in Data S2.

3  | RESULTS

3.1 | Simulation example including rarely observed 
species

First,	 we	 applied	 our	 method	 to	 simulated	 meta-	community	 data	
with	100	species	and	200	study	plots.	 In	this	example,	two	species	
were	never	observed	and	27%	of	species	were	observed	in	less	than	
10%	of	plots	(see	“Effect	of	unobserved	or	rarely	observed	species”	
in	Data	S2	for	more	details).	To	simulate	environmental	filtering,	we	
simulated	a	decrease	in	the	community	means	(CMs)	of	a	functional	
trait	along	an	environmental	gradient	(open		orange	dots	in	Figure	1).	
Due	to	detection	filtering,	estimated	CMs	from	observed	communi-
ties	(black	dots	in	Figure	1)	were	biased	towards	high	values	and	the	
estimated	slope	of	CMs	along	the	gradient	was	 less	steep	than	for	
true	 communities.	 If	 CMs	 are	 calculated	 from	 detection-	corrected	
communities	(red	+	in	Figure	1),	bias	is	reduced	and	the	slope	along	
the	gradient	more	closely	follows	the	slope	for	the	true	communities.

3.2 | Swiss plant communities

In	total,	1,733	species	were	recorded	on	the	362	plots.	Including	the	
data	of	both	visits,	256.0	±	52.0	(average	±	SD)	species	were	observed	
per	plot.	The	algorithm	of	the	single-	season	occupancy	model	failed	to	
converge	consistently	for	species	with	fewer	than	four	observations,	
so	we	analysed	only	the	1,296	species	(75%	of	all	recorded	species)	
with	at	least	four	records.	To	determine	the	effect	on	functional	diver-
sity	of	removing	the	437	species	with	fewer	than	four	observations,	
we	 calculated	 all	 measures	 of	 functional	 composition	 and	 diversity	
for	communities	 including	all	observed	species	and	for	communities	
with	the	rare	(<4	plots)	species	excluded.	We	found	removing	the	very	
rarest	species	made	little	difference,	because	measures	of	functional	
composition	and	diversity	calculated	from	communities	with	all	spe-
cies were strongly correlated with measures from communities with 
the	rare	species	excluded	(all	Pearson	correlation	coefficients	>0.995).

http://www.github.com/TobiasRoth/detectionfilter
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The	detection	probability	 for	 a	 species	with	average	 trait	values	
and	an	average	number	of	occurrences	(i.e.	the	number	of	plots	a	spe-
cies	was	estimated	to	occur	 in),	at	average	elevation,	was	0.94.	This	
value	 corresponds	 to	 the	 back-	transformed	 intercept	 of	 the	 linear	
model	 that	 predicts	 species’	 detectabilities	 (Table	2).	 While	 detec-
tion	probability	decreased	 for	plants	with	 larger	specific	 leaf	area,	 it	
increased	for	plants	with	larger	canopy	height	and	higher	seed	mass.	
The	 effect	 of	 height	 on	 detection	 is	 clear,	 and	 most	 of	 the	 larger	
species	 (bushes	and	 trees)	had	average	detection	probabilities	>.95.	
A	good	example	of	how	SLA	affected	detection	probability	 is	Sedum 
acre:	while	 it	 is	a	 relatively	 short	and	small-	seeded	species,	 it	 is	 still	
rather	easy	to	detect	 (average	detection	probability	=	.92)	due	to	 its	
long-	lived,	 fleshy	 leaves	with	 low	 specific	 leaf	 area.	The	differences	
in detection between Convallaria majalis	(average	detection	probabil-
ity = .95) and Allium ursinum	 (average	detection	probability	=	.67)	are	
also	 instructive:	while	canopy	height	and	specific	 leaf	area	are	simi-
lar	for	the	two	species,	Convallaria majalis	has	conspicuous	fruits	with	
a	 few	 large	 seeds,	 in	 contrast	 to	 the	 inconspicuous	 fruits	 and	 small	
seeds of Allium ursinum.	Compared	to	the	functional	traits,	however,	
elevation	and	the	number	of	occurrences	(i.e.	how	widespread	a	spe-
cies	was)	were	stronger	predictors	of	detection	probability	(Table	2).	In	
general,	species	that	were	more	widespread	or	occurred	on	average	at	
higher	elevations	were	more	likely	to	be	detected.

On	average,	94.8%	of	the	species	that	were	estimated	to	occur	in	
a	community	were	actually	observed.	The	proportion	of	observed	spe-
cies was highest at around 900 m and decreased with increasing ele-
vation	(Figure	2a).	We	also	examined	the	characteristics	of	the	species	
that	were	predicted	to	be	missing	from	each	community,	and	calcu-
lated the total occurrence and mean elevation of occurrence for each 
species.	We	then	plotted	the	average	characteristics	(total	occurrence	
and	average	elevation)	of	the	observed	and	missing	species,	for	each	
community,	 against	 elevation.	Up	 to	 about	750	m,	 the	missing	 spe-
cies, that is those that remained undetected within a community, were 

generally	species	that	occurred	at	lower	elevations	(Figure	2b)	or	that	
were	rarer	(i.e.	occurred	on	fewer	plots;	Figure	2c)	than	the	observed	
species.	The	species	that	most	often	remained	undetected	in	commu-
nities below 750 m were Buglossoides arvensis, a weed of arable land, 
and Helianthus tuberosus,	a	currently	spreading	 invasive	species	 that	
flowers	 late.	 In	contrast,	 above	1,000	m	 the	missing	species	 tended	
to be mostly those that occur at higher elevations than the observed 
species	(Figure	2b),	and	in	communities	around	1,000	m,	the	missing	
species	tended	to	be	quite	widespread	ones	that	can	occur	at	a	range	
of	 elevations.	 The	 species	 that	most	 often	 remained	 undetected	 in	
communities between 750 m and 1,250 m was Descurainia sophia, a 
ruderal	plant	of	fields	and	dry	rock	faces.

The	 bias	 caused	 by	 detection	 filtering	 was	 relatively	 weak	 for	
measures	of	functional	composition	(Figure	3)	but	had	larger	effects	
on	 some	 functional	 diversity	 metrics	 (Figure	4).	We	 believe	 that	 a	
study along an elevational gradient should be able to detect environ-
mentally	 induced	differences	 in	 functional	 composition	or	diversity	
that occur across a 100- m elevation difference. If detection filter-
ing	has	a	 larger	effect	on	functional	composition	than	the	effect	of	
100- m elevation difference, we consider that it could obscure trait–
environment	 relationships.	We	therefore	 (arbitrarily)	defined	detec-
tion filtering to have a substantial effect if it caused a larger change in 
functional	composition/diversity	than	we	observed	per	100	m	along	
the	elevational	 gradient.	 Following	 this	 definition,	 imperfect	 detec-
tion	 biased	 the	 estimates	 of	 community	mean	 specific	 leaf	 area	 in	
17.1%	of	the	studied	communities	 (Figure	3a),	biased	the	estimates	
of	community	mean	canopy	height	in	2.8%	of	communities	(Figure	3b)	
and biased the estimates of community mean seed mass in 31.5% of 
communities	(Figure	3c).	Following	the	same	definition,	the	effect	of	
removing	rare	 (<4	observations)	species	was	weaker:	 removing	rare	
species	was	 relevant	 in	only	0.6%	of	communities	 for	SLA,	 in	0.3%	
of	communities	for	canopy	height,	 in	1.4%	of	communities	for	seed	
mass, in 3.3% of communities for functional richness and in 13% of 
communities	for	functional	packing.

Observed and detection- corrected estimates of community means 
of	specific	 leaf	area,	canopy	height	and	seed	mass	were	all	 strongly	
correlated	 (all	r	>	.99).	For	functional	diversity,	we	found	that	detec-
tion	 filtering	 mainly	 affected	 functional	 packing	 and	 not	 functional	
richness: detection filtering affected functional richness in only 7.2% 
of	communities	but	affected	functional	packing	in	95.6%	of	communi-
ties. Still, correlations between estimates of observed and detection- 
corrected	 communities	 were	 high	 (FRic:	 r = .997, mnnd: r = .987). 
Furthermore,	 random	removal	of	species	 from	communities	 led	to	a	
similar	decline	in	functional	packing	as	compared	to	the	effect	of	de-
tection	filtering	(see	Figure	3.3	in	Data	S3).

Regardless of whether we used detection- corrected or observed 
meta-	community	data,	we	still	 found	the	same	pattern	of	change	 in	
functional	 diversity	 and	 composition	 along	 the	 elevational	 gradient.	
Community	mean	values	of	SLA,	height	and	seed	size	declined	along	
the	elevational	gradient,	with	the	steepest	decline	occurring	for	can-
opy	 height	 (Figure	3).	 The	 response	 of	 functional	 diversity	 metrics	
was less clear: while functional richness showed a rather continuous 
decline	along	 the	elevation	gradient,	 the	peak	of	 functional	packing	

TABLE  2 Results	from	linear	model	predicting	species’	detection	
probabilities	(logit-	transformed)	from	the	functional	traits,	the	
number of occurrences and the average elevation of occurrence of a 
species.	Given	are	the	results	for	the	1,296	plant	species	for	which	
detection-	corrected	occurrences	were	estimated.	Effect	sizes	are	the	
estimated	intercepts	and	slopes,	SE is the standard error of the 
estimates, and the p-	value	is	for	the	null	hypothesis	that	the	variables	
had	no	effect	on	species’	detection	probability.	Note	that	the	results	
are based on the normalized log- transformed variable data and thus 
allow	for	direct	comparison	of	effect	sizes

Intercept and predictor 
variables Effect size SE p- value

Intercept 2.795 0.082

Specific	leaf	area −0.165 0.080 .040

Canopy	height 0.219 0.092 .017

Seed mass 0.386 0.083 <.001

Number	of	occurrences 0.610 0.077 <.001

Average elevation of 
occurrence

0.564 0.097 <.001
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(i.e.	 smallest	 mean	 nearest	 neighbour	 distance)	 occurred	 at	 around	
1,700	m	(Figure	4a,b).	The	peak	in	functional	packing	coincided	with	
the	peak	in	the	number	of	species	in	a	community	(Figure	4c).

4  | DISCUSSION

One	of	the	greatest	challenges	when	using	ecological	data	is	imper-
fect	detection	of	species	(Kéry	&	Schmid,	2004;	Yoccoz	et	al.,	2001).	
This	is	not	only	a	problem	for	animals	but	is	also	an	issue	in	studies	
on	 plants	 (Chen	 et	al.,	 2013).	 Perfect	 detection	 should	 not	 be	 as-
sumed	 in	plant	surveys,	even	for	easily	 recognizable	species	under	

ideal	survey	conditions	 (Ng	&	Driscoll,	2015).	Although	there	have	
been	great	efforts	to	account	for	imperfect	detection	in	animal	and	
plant	surveys	during	the	last	decade	(Bailey,	MacKenzie,	&	Nichols,	
2013;	Chen	et	al.,	2013;	Kéry	&	Royle,	2016),	 imperfect	detection	
has been largely neglected in community ecology research until re-
cently	(Cardoso	et	al.,	2014;	Jarzyna	&	Jetz,	2016;	Mihaljevic	et	al.,	
2015;	 Tingley,	 Ruiz-	Gutierrez,	Wilkerson,	Howell,	 &	 Siegel,	 2016).	
Our	 study	 shows	 that	 imperfect	 detection	may	 bias	 estimation	 of	
functional	 diversity	 in	 particular.	 We	 also	 show	 that	 hierarchical	
models	can	easily	be	applied	to	estimate	detection	filtering,	even	in	
cases	where	a	high	proportion	of	 species	are	only	 rarely	observed	
(Figure	1).

F IGURE  2  (a)	Change	in	the	observed	proportion	of	occurring	species	plotted	against	community	elevation.	(b)	Mean	elevation	of	species	
occurrence	averaged	for	observed	species	(red	points)	and	for	species	that	were	estimated	to	occur	in	a	community	but	that	were	not	detected	
(i.e.	overlooked	species,	blue	points),	plotted	against	community	elevation.	(c)	Number	of	occurrences	per	species	averaged	for	observed	species	
(red	points)	and	for	overlooked	species	(blue	points),	plotted	against	community	elevation.	Smoothed	curves	are	predictions	from	generalized	
additive	models	(GAMs)
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F IGURE  3 Change	in	community	means	(CMs)	of	log-	transformed	and	normalized	(z- score) trait values along the elevational gradient for the 
three	functional	traits:	(a)	specific	leaf	area,	(b)	canopy	height	and	(c)	seed	mass.	Points	give	CMs	of	the	362	observed	communities	that	are	not	
corrected	for	detection	filtering.	Coloured	points	indicate	communities	where	imperfect	detection	affected	estimates	of	CMs	more	than	the	
change	in	community	composition	we	observed	per	100	m	along	the	elevational	gradient	(red	points:	observed	CMs	are	lower	than	detection-	
corrected	CMs;	blue	points:	observed	CMs	are	larger	than	detection-	corrected	CMs).	The	lines	represent	the	predictions	from	the	generalized	
additive	model	(GAM)	applied	to	the	observed	communities	(dotted	line)	and	to	the	detection-	corrected	communities	(solid	line)
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Species	detectability	depended	on	all	three	functional	traits	tested,	
meaning	that	short	species	with	small	seeds	and	high	specific	leaf	area	
(SLA)	values	were	less	likely	to	be	detected.	Lower	values	of	SLA	are	
related	 to	 longer	 leaf	 life	 span	 (Reich,	Walters,	 &	 Ellsworth,	 1997),	
and	leaves	with	a	longer	life	span	are	likely	to	be	present	during	both	
spring	and	autumn	surveys,	meaning	that	they	may	be	more	likely	to	
be	detected	than	leaves	with	short	life	spans.	The	reasons	for	the	cor-
relation between seed size and detectability are less clear. However, 
small-	seeded	species	are	usually	ruderals	with	a	high	dispersal	ability	
but	 short	 life	 span	 (Diaz	et	al.,	2016).	These	plants	may	have	more-	
variable	population	dynamics,	 consistent	with	occurring	 in	 relatively	
ephemeral	habitats	and	making	the	species	harder	to	detect.	Finally,	
the	correlation	between	canopy	height	and	detectability	of	species	is	
well	known	(Chen	et	al.,	2013),	as	short	species	are	 less	visible	than	
large ones.

4.1 | Bias from nonrandom under- sampling

Our	 results	 suggest	 that	 imperfect	 detection	 may	 bias	 measures	
of	 some	 of	 the	 most	 commonly	 used	 functional	 traits	 of	 plants	
(Götzenberger	 et	al.,	 2012).	While	many	measures	 of	 functional	 di-
versity	have	been	shown	to	be	sensitive	to	random	under-	sampling,	
nonrandom	under-	sampling	is	expected	to	cause	even	more	bias	(van	
der	Plas	et	al.,	2017).	Recent	work	on	plant	strategies	shows	two	main	
axes	of	variation:	a	resource	economics	axis	 (related	to	specific	 leaf	
area)	and	a	size	axis	related	to	height	and	seed	size	(Diaz	et	al.,	2016;	
Westoby,	1998).	The	traits	related	to	these	axes	are	important	predic-
tors	of	plant	responses	to	the	environment	and	of	effects	on	ecosys-
tem	function	(Lavorel	et	al.,	2011).	Our	results	suggest	that	detection	
filtering may lead to underestimation of the occurrence of ruderal 
(short,	 small	 seeded)	 and	 fast-	growing	 species,	 which	 could	 mean	
that	functionally	important	species	are	overlooked.	Detection	filtering	

might	bias	functional	trait	proxies	for	ecosystem	functions	related	to	
productivity	and	fast	nutrient	cycling,	which	are	promoted	by	species	
with	high	SLA	(Lavorel	et	al.,	2011)	or	proxies	for	dispersal	functions	if	
these	are	promoted	by	small-	seeded	species.

Nevertheless,	detection	filtering	only	had	marginal	effects	on	func-
tional	composition	and	diversity	in	our	study.	Inclusion	of	the	missed	
species	 mainly	 increased	 functional	 packing	 of	 communities	 (lower	
mean nearest neighbour distance of detection- corrected communities 
in	Figure	4b)	but	hardly	affected	functional	richness	(Figure	4a).	This	
suggests	that	the	missing	species	were	similar	in	terms	of	their	combi-
nation	of	leaf-	height-	seed	traits	to	the	species	that	had	been	detected	
in	 that	 community.	 Indeed,	 detection	 effects	 on	 functional	 packing	
disappeared	 when	 we	 randomly	 removed	 species	 from	 detection-	
corrected communities until they contained the same number of 
species	as	the	observed	communities.	The	functional	similarity	of	ob-
served	and	missed	species	is	also	evident	when	looking	at	the	three	
traits	separately,	where	the	missed	species	hardly	affected	the	com-
munity	means	of	 the	three	functional	 traits	 (Figure	3).	This	suggests	
that many functional trait metrics are relatively robust to detection 
filtering.	However,	 care	 should	 be	 taken	when	 estimating	measures	
of	 functional	 packing	 as	 these	 metrics	 are	 sensitive	 to	 species	 de-
tection.	Even	if	the	bias	caused	by	missed	species	is	not	greater	than	
that	caused	by	randomly	missing	species,	it	is	still	important	to	know	
whether	a	lot	of	species	are	likely	to	be	missing	or	not	and	whether	the	
proportion	of	missed	species	is	similar	between	communities.

4.2 | Applicability and adaptability of the approach

Overall,	 high	detection	probabilities	 in	our	 study	minimized	 the	po-
tential for detection filtering to be a major source of error. In cases 
where	survey	and	sampling	methods	lead	to	lower	detection	rates	or	
a	species	group	has	lower	detectability	than	plants	(e.g.	birds),	greater	

F IGURE  4 Changes	in	(a)	functional	richness	(convex	hull	volume	of	the	three	functional	dimensions	specific	leaf	area,	canopy	height	and	
seed	mass),	(b)	functional	packing	(mean	nearest	neighbour	distance)	and	(c)	taxonomic	diversity	(number	of	species)	along	the	elevational	
gradient.	Points	give	the	estimates	of	the	362	observed	communities	that	are	not	corrected	for	detection	filtering.	Coloured	points	indicate	
communities	where	imperfect	detection	affected	estimates	more	than	the	change	in	community	diversity	we	observed	per	100	m	along	the	
elevational	gradient	(red	points:	observed	estimates	are	below	the	detection-	corrected	estimates;	blue	points:	observed	estimates	are	above	
the	detection-	corrected	estimates).	The	lines	represent	the	predictions	from	the	generalized	additive	model	(GAM)	applied	to	the	observed	
communities	(dotted	lines)	and	to	the	detection-	corrected	communities	(solid	line)
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potential	for	inferential	errors	exists,	and	correcting	functional	diver-
sity	metrics	for	detection	filtering	is	likely	to	be	even	more	important.	
Our	approach	provides	a	method	to	correct	functional	diversity	and	
composition	 metrics	 for	 detection	 filtering.	 As	 true	 occupancy	 can	
be	 estimated	 independently	 from	 detection	 probability	 using	 occu-
pancy	models	(MacKenzie	&	Kendall,	2002),	the	derived	estimates	of	
functional	composition	and	diversity,	obtained	from	these	corrected	
occupancy	 estimators,	 will	 be	 less	 biased	 by	 imperfect	 detection	
(Iknayan	et	al.,	2014).	This	means	that	where	repeated	surveys	have	
been	carried	out,	it	is	possible	to	correct	functional	composition	and	
diversity	measures	using	the	approach	outlined	here.	However,	meth-
ods	to	estimate	detection	probability	are	also	available	for	single-	visit	
surveys	 (Guillera-	Arroita,	2017).	Examples	 include	time-	to-	detection	
methods	(Bornand,	Kéry,	Bueche,	&	Fischer,	2014;	Garrard,	Bekessy,	
McCarthy,	&	Wintle,	2008;	Guillera-	Arroita,	Morgan,	Ridout,	&	Linkie,	
2011).	Like	occupancy	models,	these	methods	provide	an	estimate	of	
true	occupancy.	It	should	thus	be	possible	to	adopt	the	approach	out-
lined	here	to	these	methods.	Furthermore,	methods	such	as	distance	
sampling	(Buckland,	Anderson,	Burnham,	&	Laake,	2005)	or	N-	mixture	
models	allow	estimation	of	detection	probability	from	abundance	data	
(Royle,	2004).

4.3 | Effect of species distribution

Our results also suggest that attributes related to the distribution 
of	 a	 species	 are	 important	 in	 determining	 its	 detection	 probability	
(Table	2).	 The	 number	 of	 plots	 on	 which	 a	 species	 occurred	 corre-
lated	with	detection	probability,	meaning	that	widespread	species	had	
generally	higher	detectabilities	 than	 species	with	 restricted	distribu-
tions.	Species	with	a	restricted	distribution	are	often	also	locally	rare	
(Gaston	&	Lawton,	1990),	 and	 it	 is	well	 established	 that	 local	 abun-
dance	 is	 a	 key	 variable	 predicting	 detection	 probability	 (Chen	 et	al.,	
2013;	 Royle	 &	Nichols,	 2003).	 Note,	 however,	 that	 in	 communities	
at	mid-	elevations,	at	around	1,000	m,	missed	species	were	on	aver-
age	more	widespread	than	observed	species.	Ruderals	that	can	cope	
with	human	disturbance	at	low	elevations	but	also	with	comparatively	
low	temperatures	at	higher	elevations	might	be	relatively	rare	at	mid-	
elevations, because disturbed habitat is rare at these elevations. As a 
consequence,	relatively	widespread	species	might	be	difficult	to	detect	
at	mid-	elevations.	Taking	abundance	into	account	in	indices	of	func-
tional	composition,	 that	 is	by	calculating	community-	weighted	mean	
functional	traits,	offers	promising	insights	into	how	species	respond	to	
environmental	changes	(de	Bello,	Leps,	Lavorel,	&	Moretti,	2007),	and	
community-	weighted	means	are	often	good	predictors	of	ecosystem	
function.	As	the	probability	of	detecting	a	species	is	positively	related	
to	its	abundance	(Iknayan	et	al.,	2014),	using	N-	mixture	models	to	infer	
how detection filtering alters abundance- weighted measures of func-
tional	diversity	seems	an	important	avenue	for	future	research.

4.4 | Elevation and effects of imperfect detectability

More	 surprisingly,	 the	 species	 with	 high	 average	 detection	 prob-
ability tended to be those occurring at higher altitudes. Although the 

vegetation	period	is	shorter	at	higher	elevations,	the	period	between	
first	 and	 second	 visit	was	 about	 78	days	 independent	 of	 elevation.	
We	 thus	 speculate	 that	detection	probabilities	of	 species	 increased	
with	elevation	because	the	two	visits	spanned	an	increasing	propor-
tion	of	the	vegetation	period	and	that	 it	was	thus	less	likely	to	miss	
early	 or	 late	 flowering	 species.	 Although	 detection	 probabilities	 in-
creased	with	elevation	for	individual	species,	at	the	community	level,	a	
lower	proportion	of	the	total	species	were	detected	at	high	elevation	
(Figure	2a).	This	apparent	contradiction	might	be	explained	by	the	fact	
that	the	species	level	model	is	already	corrected	for	the	frequency	of	
the	species,	as	we	included	the	number	of	occurrences	of	each	species	
alongside	the	average	elevation	of	occurrence.	However,	the	species	
that	occur	at	high	elevations	tended	to	be	rarer	(occur	in	fewer	plots).	
This	means	 that	 the	decrease	 in	 community-	level	detectability	with	
elevation	(Figure	2a)	could	be	driven	by	an	increase	in	the	proportion	
of	rare	species	in	high	elevation	communities.

There	was	only	a	weak	indication	that	imperfect	detection	would	
change	conclusions	about	how	altitude	affected	functional	composi-
tion	 and	diversity.	 Similar	 to	 the	effects	 at	 the	 species	 level,	 at	 low	
elevations, community means of height and seed size were slightly 
overestimated	and	SLA	was	slightly	underestimated	due	to	imperfect	
detection.	Apparently,	the	botanists	that	walked	the	2.5-	km	transects	
detected	more	of	the	large	species	and	fewer	of	the	short	and	small-	
seeded	species.	At	high	elevations,	taller	species	with	higher	SLA	and	
higher	 seed	mass	were	 slightly	more	 likely	 to	 be	missed	 (Figure	3).	
Species	with	this	trait	combination	are	not	well	adapted	to	high	ele-
vation	environments	(von	Arx,	Edwards,	&	Dietz,	2006)	and	thus	may	
occur	only	in	sheltered	places,	in	dwarf	forms,	as	seedlings,	as	young	
plants	or	simply	in	lower	numbers.	This	could	be	one	reason	why	the	
detection	probabilities	of	these	species	were	lower	compared	to	other	
species	in	alpine	environments.	However,	many	studies	are	interested	
in	 the	 relative	degree	of	 change	 in	 functional	 composition/diversity	
along	an	environmental	gradient,	and	in	this	case,	it	is	mainly	import-
ant that detection filtering does not change the correlation between 
observed	and	predicted	values.	The	correlation	between	observed	and	
detection-	corrected	measures	of	functional	composition	and	diversity	
should	be	high	if	the	effect	of	imperfect	detection	is	constant	across	
sites and if there are large differences among sites along the eleva-
tional	gradient.	For	all	tested	measures	of	functional	composition	and	
diversity,	we	found	correlations	of	>.99.	These	high	positive	correla-
tions	suggest	that	differences	in	the	functional	composition	between	
sites	along	elevations	are	much	more	 important	 than	effects	due	to	
detection	filtering.	Thus,	detection	filtering	did	not	obscure	trait–en-
vironment	 relationships	 in	 our	 study,	which	 is	 encouraging	 because	
many	studies	assessing	trait–environment	relationships	have	not	cor-
rected	for	imperfect	detection.	However,	to	compare	functional	com-
position	 values	 between	 studies	with	 different	 sampling	 designs	 or	
sampling	intensity,	it	might	be	important	to	correct	for	the	bias	caused	
by detection filtering.

Elevation	was	generally	a	major	driver	of	 functional	composition	
and	diversity	in	our	study.	Communities	changed	from	containing	larger	
plants	with	heavier	seeds	and	higher	specific	leaf	area	in	the	lowlands	
to	containing	smaller	plants	with	lighter	seeds	and	lower	specific	leaf	
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area	(suggesting	leafs	with	longer	life	span;	Westoby,	1998)	in	alpine	
environments.	These	trends	are	consistent	with	earlier	studies	(Dubuis	
et	al.,	2013;	Qi	et	al.,	2015)	and	are	likely	to	be	caused	by	alpine	plants	
adopting	a	more	conservative	growth	strategy	(von	Arx	et	al.,	2006).	
For	example,	alpine	plants	should	allocate	a	higher	proportion	of	their	
resources	to	vegetative	growth	(e.g.	into	leaves	with	smaller	SLA),	and	
because	of	 trade-	offs	 this	may	be	reflected	 in	reduced	reproductive	
effort	(e.g.	the	production	of	smaller	seeds;	von	Arx	et	al.,	2006;	Nobis	
&	Schweingruber,	2013).	These	gradual	and	consistent	 trends	along	
the entire elevational gradient also suggest that climate warming will 
reduce	populations	of	plants	with	slow	growth	strategies.

Patterns	 of	 functional	 traits	 can	 help	 to	 elucidate	 the	 underlying	
mechanisms	 of	 community	 assembly	 (Janecek	 et	al.,	 2013;	 Mayfield	
et	al.,	2010),	and	functional	diversity	provides	an	indicator	of	ecosystem	
functioning	(Diaz	et	al.,	2007).	Using	traits	as	indicators	of	functioning	
in	 biodiversity	 experiments	 (e.g.	 Flynn,	 Mirotchnick,	 Jain,	 Palmer,	 &	
Naeem,	2011)	is	not	likely	to	be	biased	by	problems	of	imperfect	de-
tection. However, because ecosystems are managed and ecosystem 
services	are	delivered	at	landscape	scales	(Quijas	et	al.,	2012),	and	be-
cause	manipulative	experiments	are	rarely	feasible	at	such	large	scales	
(Barbaro,	Giffard,	Charbonnier,	van	Halder,	&	Brockerhoff,	2014),	obser-
vational	approaches	using	functional	traits	to	map	services	offer	much	
promise	(de	Bello	et	al.,	2010;	Violle,	Reich,	Pacala,	Enquist,	&	Kattge,	
2014).	In	these	cases,	imperfect	detection	may	be	the	rule	rather	than	
the	exception	(Chen	et	al.,	2013),	and	our	results	suggest	that	key	func-
tional	 traits	 are	 correlated	with	 detection	 probabilities,	meaning	 that	
measures	of	 functional	 composition	and	diversity	could	be	biased	by	
detection	 filtering.	Our	 analysis	 suggests	 this	 is	 not	 a	major	 problem	
for	functional	composition,	although	this	may	or	may	not	hold	in	other	
studies,	but	 that	diversity	metrics	based	on	 the	degree	of	packing	of	
species	 in	 functional	 space	are	underestimated	by	detection	 filtering.	
Future	 studies	 should	 therefore	 consider	 correcting	 functional	 diver-
sity	measures	for	imperfect	detection.	Our	approach	provides	a	simple	
method	to	do	this	for	a	large	number	of	species	and	communities.
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