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abstract: Global change causes community composition to change
considerably through time, with ever-new combinations of inter-
acting species. To study the consequences of newly established species
interactions, one available source of data could be observational sur-
veys from biodiversity monitoring. However, approaches using obser-
vational data would need to account for niche differences between
species and for imperfect detection of individuals. To estimate pop-
ulation sizes of interacting species, we extended N-mixture models
that were developed to estimate true population sizes in single spe-
cies. Simulations revealed that our model is able to disentangle direct
effects of dominant on subordinate species from indirect effects of
dominant species on detection probability of subordinate species. For
illustration, we applied ourmodel to data from a Swiss amphibianmon-
itoring program and showed that sizes of expanding water frog popula-
tions were negatively related to population sizes of endangered yellow-
bellied toads and commonmidwife toads and partly of natterjack toads.
Unlike other studies that analyzed presence and absence of species, our
model suggests that the spread of water frogs in Central Europe is one
of the reasons for the decline of endangered toad species. Thus, study-
ing population impacts of dominant species on population sizes of en-
dangered species using data from biodiversity monitoring programs
should help to inform conservation policy and to decide whether com-
peting species should be subject to population management.

Keywords: biodiversity monitoring, detection probability, habitat
niche, introduced species, invasive species, Ranidae.

Introduction

Global change—such as climate warming, land use change,
or human transport of plants and animals—leads to con-
tracting or expanding distributional ranges of species (Sala
et al. 2000; Chen et al. 2011). The direction and rates of
range shifts are usually species specific, leading to a re-
shuffling of communities with new combinations of inter-
acting species (Hobbs et al. 2006). Interactions such as pre-
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dation, competition, parasitism, and pollination play an
important role in the maintenance of biodiversity and the
stability of ecosystems (Bascompte et al. 2006; Tylianakis
et al. 2008). Timely monitoring the change in species com-
position and inferring effects of species interactions should
thus be of high priority for conservation policy and popu-
lation management (Dornelas et al. 2014; Sentis et al. 2014).
One readily available source of data for studying the con-

sequences of newly interacting species is observational sur-
veys from biodiversity monitoring or citizen science pro-
grams (Delaney et al. 2008; Dickinson et al. 2010; Couvet
et al. 2011). Such approaches using observational data should
account for niche differences between potentially interact-
ing species by including variables describing the niche differ-
ences (Linder et al. 2003). Additionally, studies using obser-
vational data need to account for imperfect detection of the
interacting species (Pellet and Schmidt 2005; Schmidt 2005;
Tanadini and Schmidt 2011); for example, if a dominant spe-
cies would influence the behavior of a subordinate species,
this may affect detection probability of subordinate species,
which needs to be separated from effects on population size
(Waddle et al. 2010).
Recently, it was proposed to study species occurrence and

co-occurrence patterns based on site-occupancy models us-
ing presence-absence data (MacKenzie et al. 2004; Waddle
et al. 2010; Miller et al. 2012). However, data on presence
or absence of a species provide only limited information on
the actual size of a population (Dorazio and Connor 2014).
Clearly, estimates of true population sizes would permit a
more accurate assessment of the effects of species interac-
tions, because a dominant species may reduce population
sizes of other species without necessarily leading to their local
extinction (Linder et al. 2003). Here, we aimed to develop a
method to estimate true population sizes of interacting spe-
cies by extending a class of models that allow the estimation
of population sizes from repeated counts of individuals in
the field while accounting for imperfect detection. Because
local population size N is assumed to be a random variable
distributed according to somemixing distribution (e.g., Pois-
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son and Binomial), this class of models is often called N-
mixture models (Royle 2004) or binomial-mixture models
(Kéry 2008). Originally, these models were developed to esti-
mate population sizes in single species.

The extension of N-mixture models for interacting spe-
cies that we propose is conceptually related to the work of
Waddle et al. (2010), who expanded the class of occupancy
models for estimatingpatterns of co-occurrence (presence vs.
absence) of interacting species. Unlike Waddle et al. (2010),
however, we aimed to estimate true population sizes. In our
N-mixture model, we assume one species to be dominant
and the other to be subordinate, and the population size and
detection probability of the subordinate species is assumed
to depend on the population size of the dominant species
but not vice versa. Such a pattern is typical for ecological in-
teractions between dominant species and endangered subor-
dinate species (Waddle et al. 2010). Our model fits into the
recent class of parametric models to estimate population ef-
fects of interacting species (Dorazio and Connor 2014). An
advantage of using parametric modeling is that the inten-
sity of interspecific interactions is specified asmodel parame-
ters and can thus be quantified. Further, potential ecological
determinants—such as habitat or other site-specific covari-
ates—can be incorporated and their effects be estimated in-
dependently of the effects of imperfect detection.

To illustrate our approach, we analyzed population sizes
of endangered amphibians in the context of recent range ex-
pansions of the so-called water frog species complex in Eu-
rope (Pagano et al. 2003). One of those species is the Eur-
asian marsh frog (Pelophylax ridibundus) that, together with
other sister species, has greatly expanded its range in Central
Europe (Vorburger andReyer 2003). However, while the rapid
replacement of native water frog populations (e.g., pool frogs
Pelophylax lessonae) is now well documented, the conse-
quencesof the spreadof Eurasianmarsh frogs, their sister spe-
cies, and hybrids on other native amphibian populations are
currently unclear (Schmeller et al. 2007; Cayuela et al. 2013).
We applied our model using data from an amphibian moni-
toring program in Switzerland, to test whether the population
of water frogs (Eurasianmarsh frogs, pool frogs, and their hy-
brids) negatively impacts populations of endangered yellow-
bellied toads (Bombina variegata), common midwife toads
(Alytes obstetricans), and natterjack toads (Epidalea calamita).

Unlike other studies that have been based on presence-
absence data (Cayuela et al. 2013), our model suggests that
expanding water frogs strongly negatively impact on popu-
lations of at least two of the three endangered toad species.
The results indicate that estimating true population sizes in-
stead of occurrences allows for a more accurate assessment
of effects of species interactions.We thus suggest that our ex-
tension of N-mixture models is a useful tool for estimating
effects of species interactions on populations of endangered
species.
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Methods

N-Mixture Model for Interacting Species

Our aim was to extend the traditional class of N-mixture
models (Royle 2004) to estimate population sizes of two po-
tentially interacting species. We begin by describing a model
of location-specific population sizes that are not directly ob-
servable because not all individuals that are present are de-
tected in the field. Let Ni be the latent (i.e., not observable)
population size of a species at site ip 1, : : : , R. Each site
is visited jp 1, : : : , J times per year, and we assume popu-
lation closure between the J visits, meaning that no birth,
death, immigration, or emigration between the J visits oc-
curred (Dail andMadsen 2011). The counts yi,j are then con-
sidered binomial random variables with population size Ni

and detection probability pi,j. Similar to Waddle et al.
(2010), we use superscript A to denote parameters for the
subordinate species and superscript B to denote parameters
for the dominant species. Accordingly, the observation pro-
cess that yields the counts of the subordinate and the dom-
inant species from the latent local population sizes can be
described as

yAi,j ∼ binomial(NA
i , p

A
i,j),

yBi,j ∼ binomial(NB
i , p

B
i,j):

Furthermore, we assume that the spatial variation of local
population sizesNi of the subordinate and dominant species
among sites ip 1, : : : , R can be described using a Poisson
distribution with expected population size li:

NA
i ∼ Poisson(lAi ),

NB
i ∼ Poisson(lBi ):

This parameterization allows us to specify site-specific co-
variates, including effects from co-occurring species. We as-
sume that the expected population size of the subordinate
species can be described by a number of covariates and by
the latent local population size of the dominant species. Ex-
pected population sizes are expressed as

log(lAi )p aA
0 1

XK

kp1

Xi,ka
A
k 1 h

ffiffiffiffiffiffi
NB

i

p
1 εAi ,

where the expected population size of the subordinate spe-
cies lAi is described by the log-linear predictor consisting of
the intercept aA

0 , the linear slopes aA
k for the kp 1, : : : , K

covariates at site i with covariate value Xi,k, and the linear
effect h of the square root of the latent local population size
of the dominant speciesNB

i . Note that we used the log trans-
formation of the expected population size lAi , which is the
traditional linkfunction inPoissongeneralized linear (mixed)
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Estimating Species Interactions 459
models (Gelman and Hill 2007). However, we used a square
root transformation for the local population size, because it
canhavea valueof 0 (i.e., the dominant species doesnot occur
at site i), and a log transformationwould thus not be possible.
To capture the variation of the expected population size
among sites that is not explained by the covariates or by the
effect of the dominant species, we added the random effect
εAi ∼ normal(0, jA), where jA is the standard deviation of
the random effect. Similarly, we also assume that the detec-
tion probability of the subordinate species can be described
by different covariates as well as by the latent local popula-
tion size of the dominant species:

logit(pAi,j)p bA0 1
XK

kp1

Xi,kb
A
k 1 y

ffiffiffiffiffiffi
NB

i

p
1 mAi,j ,

where the detection probability of the subordinate species
pAi,j is described by the logit-linear predictor consisting of
the intercept bA0 , the linear slopes b

A
k for the kp 1, : : : , K

covariates at site i with covariate value Xi,k, and the linear
effect y of the square root of the latent local population size
of the dominant species NB

i . Again, we also included a ran-
dom effect mAi,j ∼ normal(0, tA) with standard deviation tA

to capture the variation in detection probability among sites
or visits that could not be explained by the covariates or by
the influence of the dominant species.

For the dominant species, however, we assume neither
the local population size nor the detection probability of
the dominant species to be affected by the local population
size of the subordinate species:

log(lBi )p aB
0 p

XK

kp1

Xi,ka
B
k 1 εBi ,

logit(pBi,j)p bB0 1
XK

kp1

Xi,kb
B
k 1 mBi,j:

We expect covariates to predict the local population size and
detection probability of the dominant species. Note that we
used the same covariates Xi,k in the last four formulas, which
does not necessarily need to be the case. To decide which co-
variates to include in our models, we could make the deci-
sion a priori, on the basis of what we know about the biology
of the subordinate and the dominant species (which we did
in our case study; see below). Alternatively, one could apply
one of the many methods for model selection, particularly
if the sample size is small compared with the number of
covariates. For more details on model selection in a Bayes-
ian framework, see, for example, Hooten and Hobbs (2015).
Simulation Study

To examine the performance of our model, we first applied
it to simulated data that had the same structure as the data
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from our case study (see below). We assumed three differ-
ent covariates with effects on population size and detection
probability of dominant and subordinate species that ran-
domly varied in each simulated data set. We run 100 sim-
ulations for each of four simulation scenarios: in the first
scenario, we assumed the dominant species to negatively
impact on the population size of the subordinate species
but not on the detection probability of the subordinate spe-
cies. In the second scenario, we assumed the dominant spe-
cies to negatively impact on the detection probability of the
subordinate species but not on its population size. In the
third scenario, we assumed the dominant species to nega-
tively affect both the population size and the detection prob-
ability of the subordinate species. The strength of these neg-
ative effects randomly varied for each data set. The fourth
simulation scenario was similar to the third scenario, but ad-
ditionally we used amethod suggested byMartin et al. (2011)
to simulate data where detection probabilities of individuals
of both the dominant and the subordinate species are not
independent from other individuals, thus deliberately violat-
ing one of the most important assumptions of N-mixture
models (Martin et al. 2011).
To estimate model parameters from the simulated data,

we used a Bayesian approach based onMarkov chain Monte
Carlo (MCMC) methods (Link et al. 2002). MCMC analyses
were conducted using JAGS 3.3.0 (Plummer 2003) and were
executed in R using the R add-on library rjags. We used
vague priors for all parameters, and posteriors were based
on two parallel chains with 200,000 iterations each, discard-
ing the first 50,000 values and thinning the remainder by us-
ing every 100th value. The simulation study is described in
more detail in the supporting information, available online,
where we provide and comment on our R and JAGS codes
that can be adapted to fit other study questions and other
simulated or real data sets.
Case Study: Amphibian Monitoring Program

To illustrate how our method can be applied to data from
existing observational studies, we analyzed the data from an
amphibian monitoring program of the canton of Aargau in
northern Switzerland (Schmidt 2005; Tanadini and Schmidt
2011). For a description of the monitoring protocol, see ap-
pendix A (apps. A and B available online). As far as possible,
individuals of the water frog complex were identified as ei-
ther Eurasian marsh frogs (Pelophylax ridibundus) or pool
frogs (Pelophylax lessonae) including hybrids (Pelophylax
esculentus), on the basis of morphological characteristics or
their calls (Laufer et al. 2007).However, because of the strong
phenotypic similarity of Eurasian marsh frogs, pool frogs,
and their hybrids, unambiguous identification in the field
is often impossible (Dubey et al. 2014). We therefore pooled
the data on Eurasian marsh frogs, pool frogs, and their hy-
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brids before analyses and used the name “water frog” for all
of them. The data are deposited in the Dryad Digital Re-
pository: http://dx.doi.org/10.5061/dryad.7gt4m (Roth et al.
2016).

To analyze themonitoring data, we used the Bayesian ap-
proach and the same settings as in the simulation study (see
above and supporting information). Our aim was to infer
whether local population sizes of yellow-bellied toads, com-
mon midwife toads, or natterjack toads (subordinate spe-
cies) at a given site were negatively related to the number
of water frogs (dominant species) at the same site. Note that
we could have used a model that simultaneously includes
all three subordinate species within a single analysis by in-
cluding separate parameters for each of them. However, in
a single model, each parameter would need to have an in-
dex for each species; to allow a simpler bookkeeping of pa-
rameters, we decided to run three separate models, each in-
ferring the effect of water frogs on one of the subordinate
toad species.We analyzed the data from the year of themost
recent survey per site, selected from all surveys conducted
between 1999 and 2013. Within a year, each site was visited
twice at night, and a third visit was made during the day
(see app. A). The data from the last (diurnal) visits were ex-
cluded from the analysis, because adults of several amphib-
ian species are almost completely inactive during the day,
and because population closure (i.e., no birth, death, immi-
gration, or emigration between the visits), which is an impor-
tant assumption of the applied models (Knape and Korner-
Nievergelt 2015), could not be safely assumed that late in the
season (third visits were made between June 15 and July 31).
Further, we decided to analyze only sites that are currently
suitable for amphibians by removing all sites where none
of the four amphibian species had been detected. The ana-
lyzed data set contained Rp 481 sites, and each site was vis-
ited during J p 2 nocturnal visits.

To model site-specific population sizes, we used as site-
specific covariates (1) elevation (linear and quadratic term;
mean� SDp 405� 77 m asl), (2) total size of the surface
of all water bodies at a site (linear and quadratic term;
mean� SDp 1,172� 4,177 m2), (3) observation of fish
occurrence (14%of sites), (4) whether thewater level showed
strong fluctuations between the two visits (13% of sites), and
(5) occurrence of covering vegetation in and/or around the
water bodies. Vegetation cover may be particularly impor-
tant because it indicates the successional stage of water bod-
ies. In 71% of sites, we found covering vegetation either
around the water bodies or for the reed or other water plants
within the water bodies. Note that we could use water sur-
face as an offset, that is, modeling number of frogs per water
surface, assuming a fixed linear increase of number of frogs
with increasing water surface. Since amphibians seem to
prefer water bodies of intermediate size (Semlitsch et al.
2015), and thus the number of individuals would not line-
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arly increase with water surface, we decided to relax the as-
sumption of a fixed slope and instead estimated a linear and
a quadratic term for the effect of water surface. As covari-
ates for detection probability, we included (1) the date when
the visit was conducted (linear and quadratic term) to ac-
count for the phenology in calling activity, (2) the total size
of the surface of all water bodies at a site (linear and quadratic
term), and (3) the occurrence of vegetation in or around the
water bodies of the site to account for the possibility that
dense vegetation could be used by toads to hide from water
frogs or from field workers.
The selection of covariates was mainly guided by the bi-

ology of the studied toad species (Martinez-Solano et al.
2003; Van Buskirk 2005;Warren and Buttner 2008; Cayuela
et al. 2011, 2013). Note that we used the same covariates as
predictors for local population size and detection probabil-
ity of both the dominant species and the subordinate spe-
cies. With increasing complexity of a model, the bias (i.e.,
the systematic difference between a parameter estimate and
its true value) usually decreases, while the uncertainty of the
parameter estimate increases (Korner-Nievergelt et al. 2015).
Since our main aim was to infer whether and how strongly
the dominant species was affecting the population size of the
endangered toad species, we aimed for minimizing bias (i.e.,
confirmatory modeling sensu Shmueli 2010). Additionally,
our sample size was relatively large compared with the num-
ber of parameters in the model. We thus decided not to apply
model selection and not to reduce the complexity of our full
models.
We usedMCMCmethods to obtain parameter estimates.

We used vague priors for all parameters (for exact specifi-
cation of thepriors, seefig. S1 in supporting information), and
posteriors were based on two parallel chains with 140,000
iterations each, discarding the first 20,000 values and thin-
ning the remainder by using every 100th value. We assessed
convergence using history plots and theGelman-Rubin diag-
nostic (Brooks and Gelman 1998).We used themeans of the
simulated values of the posterior distributions as point esti-
mates of the parameters and 2.5% and 97.5% quantiles as
estimates of the 95% Bayesian credible intervals. Similar to
Amrhein et al. (2012), we speak of a clear effect (which, in
a frequentist terminology, is similar to a significant effect) if
0 was not included in the 95% Bayesian credible interval of
an estimate.
We used predictivemodel checking with Bayesian P values

to assess the goodness of fit of our statistical model (Gelman
et al. 2013). The Bayesian P value is the probability that a test
statistic calculated from simulated data is larger than the test
statistic calculated from the observed data. Specifically, we
compared the real counts of the dominant and the subordi-
nate species with replicated data under the model using the
x2 discrepancy as our test statistic (Kéry and Schaub 2011).
Furthermore, we aimed to check for spatial autocorrelations.
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Unlike when applying linear (mixed) models, however, con-
ventional residuals are not directly available in site occupancy
models when each site is visited several times. To obtain an
estimate that is comparable to residuals, we calculated eri for
each site i as the mean standardized difference between ob-
served and expected values averaged over the two visits:

eri p
1
J

XJ

jp1

yi,j 2 Nipi,j
Nipi,j

:

We used Moran’s I values to explicitly test for significant
spatial autocorrelation in eri values (Dormann et al. 2007),
using the R function moran.test from the package spdep
(Bivand and Piras 2015). Note, however, that significance
of Moran’s I could be calculated using a different permuta-
tion test that is more conservative (Lichstein et al. 2002).
Results

Simulation Results

According to the simulation study (see app. B), our two-
species N-mixture model succeeded well in uncovering the
true effects of the covariates on population size and detec-
tion probability of the dominant and the subordinate spe-
cies. In the first three scenarios, where we simulated data
under our species interaction model, the model accurately
uncovered effects of the dominant species on the subordi-
nate species. Estimation bias for the effect of the dominant
species on the population size of the subordinate species—
expressed as the difference between estimated and true effect
for each of the 100 simulated data sets—was 0.03, 0.07, and
0.07 for scenarios 1, 2, and 3, respectively. Credible interval
coverage, which is the number of times the true value for
the effect is contained in the 95% credible interval, was close
to the nominal level of 95% (scenario 1: 0.93; scenario 2: 0.89;
scenario 3: 0.91), suggesting that model assumptions were
met and that our model provided estimates of species inter-
actions with reasonable precision. Even in the fourth sce-
nario, where we simulated data for which we violated the
assumption that individuals are detected independently of
each other, the model accurately uncovered effects of the
dominant species on population size of the subordinate spe-
cies. Estimation bias for the effect of the dominant species
on the population size of the subordinate species was 0.07,
and credible interval coverage was 0.91. More details on the
simulation results are given in appendix B.
Observed Occurrences and Co-Occurrences

In our case study, yellow-bellied toads were observed in 35%
of the 481 studied sites, common midwife toads in 22%, and
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natterjack toads in 12%. Although water frogs were observed
in 66% of the studied sites, they were less likely to be ob-
served in sites were the toad species occurred: water frogs
were observed in 46% of the sites where yellow-bellied toads
were observed (co-occurrence of water frogs and yellow-
bellied toads in 16% of all studied sites), in only 21% of
the sites where common midwife toads were observed (co-
occurrence: 5% of all sites), and in 56% of the sites where
natterjack toads were observed (co-occurrence: 7% of all
sites). In 6% of the studied sites, at least one Eurasian marsh
frog was identified at the species level, but only 3.4% of wa-
ter frogs were identified as Eurasian marsh frogs.
Covariate Effects on Population Size
and Detection Probability

Even though the studied sites covered an elevational range
of !500 m (274–730 m), we detected clear differences in
the elevational distributions of the four studied species (ta-
ble 1; fig. 1): yellow-bellied toads and water frogs had the
highest population sizes at lower elevations and common
midwife toads, and natterjack toads at higher elevations.
Further, habitat relationships clearly differed between the
three toad species (table 1): the common midwife toad,
where the males provide parental care by carrying a string
of fertilized eggs on their back, did not show clear associa-
tions for particular sites. In contrast, high natterjack toad
populations were clearly associated with early successional
water bodies (sites with water bodies without covering vege-
tation inandaround thewaterbody, andsiteswithwaterbod-
ies with strong fluctuations in water levels). Yellow-bellied
toads were somewhat intermediate and were associated with
sites with variable water levels and with sites without fishes.
Water frogs did not show particular habitat relationships,
with theexception that theywereassociatedwithsiteswithout
strong fluctuations of water level between two visits.
For two toad species and the water frogs, we found no ev-

idence that the variation in detection probability among
sites or visits was related to the investigated covariates. For
the common midwife toad, however, detection probability
peaked early and late during the study period, was highest
at intermediate sizes of water bodies, and was reduced when
there was vegetation in or around the water bodies (table 1).
Effect of Water Frogs on Native Toad Species

We found that local population sizes of yellow-bellied toads
and common midwife toads were clearly negatively related
to population sizes of water frogs (table 1). For the natter-
jack toad, the negative effect due to local water frog popu-
lations was not clear (i.e., 0 was included in the credible in-
terval), while the estimated effect size was still negative, as
for the other toad species (table 1). In contrast, however, de-
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tection probabilities of the toad species seemednot to depend
on the number of water frogs present at the sites (table 1). On
the basis of ourmodels, it was possible to estimate population
sizes of toads for the hypothetical case that all local popula-
tion sizes of water frogs were 0. Thus, given that all water
frogs were removed from the surveyed sites, the estimated to-
tal population sizes in the Swiss canton of Aargau of yellow-
bellied toads, common midwife toads, and natterjack toads
could potentially increase by factors of 5.5, 15.1, and 2.6, re-
spectively (fig. 2). Note, however, that because of generally
low detection probabilities (table 1), the estimates for the
total population sizes had relatively low precision (i.e., large
95% credible intervals in fig. 2).
Model Adequacy

For the three models inferring the effect of water frogs on
subordinate yellow-bellied toads, common midwife toads,
or natterjack toads, theBayesianP values based onx2 discrep-
ancy as test statistic were between .36 and .60. A value of
.5 would be perfect because this would indicate that it is
equally likely that the x2 discrepancy of the simulated data
statistic is smaller or larger than the x2 discrepancy of the ob-
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served data. Our results suggest that our models accurately
describe the data, because Bayesian P values were in the range
that is taken to indicate a goodmodel fit (Gelman et al. 2013).
Furthermore, when using Moran’s I statistic testing for spa-
tial autocorrelation in the eri values, we detected weak but
significant spatial autocorrelation for only the commonmid-
wife toad (Moran’s I statisticp 0:006, Pp :01), while for
the two other toad species and the water frogs we could not
detect significant spatial autocorrelation (yellow-bellied toad:
Moran’s I statisticp 0:003, Pp :10; natterjack toad: Mo-
ran’s I statisticp20:005, Pp :80; water frogs: Moran’s
I statisticp20:002, Pp :46).
Discussion

N-Mixture Model for Interacting Species

In this study, we extended the N-mixture model proposed
by Royle (2004) to estimate effects on true population sizes
of interacting species. Simulations revealed that our model
is able to disentangle direct effects of dominant on subordi-
nate species from indirect effects of dominant species on de-
tection probability of subordinate species. Such a dominant-
subordinate pattern of species interaction may be produced
Table 1: Effects of covariates on site-specific population sizes of the subordinate species
Covariate
 Yellow-bellied toad
 Common midwife toad
.152.034.157 on J
s and Conditions 
Natterjack toad
uly 10, 2016 23:43:48 PM
(http://www.journals.uchicago
Water frogs
Population size:

Elevation (m):
Linear
 2.95 (21.65 to 2.38)a
 1.10 (.65 to 1.56)a
 1.09 (.16 to 1.99)a
 2.97 (21.45 to 2.53)a
Quadratic
 .13 (2.24 to .47)
 2.12 (2.48 to .22)
 2.23 (2.88 to .33)
 .07 (2.17 to .32)

Size of water body (m2):
Linear
 .75 (.18 to 1.25)a
 .77 (.15 to 1.24)a
 1.05 (.37 to 1.78)a
 .52 (.37 to .65)a
Quadratic
 .19 (.06 to .31)a
 .08 (2.14 to .27)
 .06 (2.18 to .30)
 2.02 (2.07 to .03)

Fish occurrenceb
 23.15 (24.93 to 21.81)a
 2.04 (21.24 to 1.13)
 22.77 (24.92 to 2.52)a
 .17 (2.42 to .74)

Vegetation coverc
 .15 (2.85 to 1.79)
 .81 (2.50 to 2.33)
 22.18 (24.14 to 2.72)a
 .06 (2.48 to .55)

Variability of water leveld
 1.67 (.45 to 2.73)a
 2.22 (21.40 to .84)
 2.18 (.39 to 3.85)a
 2.68 (21.32 to 2.03)a
No. water frogs
 2.34 (2.51 to 2.07)a
 2.88 (21.21 to 2.57)a
 2.14 (2.40 to .12)
 . . .

Detection probability:
Date (Julian day):

Linear
 .13 (2.19 to .44)
 .50 (.17 to .97)a
 .57 (2.45 to 1.96)
 .06 (2.18 to .32)

Quadratic
 2.04 (2.12 to .02)
 .08 (.02 to .17)a
 .16 (2.06 to .46)
 2.02 (2.08 to .03)
Size of water body (m2):

Linear
 2.58 (21.16 to .07)
 2.97 (21.54 to 2.26)a
 .18 (21.07 to 1.42)
 .09 (2.08 to .26)

Quadratic
 2.09 (2.25 to .04)
 2.34 (2.58 to 2.06)a
 2.05 (2.49 to .40)
 .00 (2.07 to .07)
Vegetation coverc
 21.31 (22.67 to .11)
 22.30 (24.12 to 2.43)a
 .43 (21.73 to 2.73)
 .17 (2.51 to .90)

No. water frogs
 .16 (2.15 to .33)
 .24 (2.19 to .61)
 2.02 (2.49 to .43)
 . . .
Note: Given are means and 2.5% and 97.5% quantiles (in parentheses) of the posterior distribution. Elevation was standardized by subtracting 500 m and
dividing by 100 m; size of the surface of water bodies was standardized by taking the log of the size and subtracting the log of 500 m2.

a Clear effects (i.e., 0 not included in 95% credible interval).
b 0 p no; 1 p yes.
c 0 p no/few; 1 p covering around or within water body.
d 0 p no/little; 1 p strong.
.edu/t-and-c).
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by different types of ecological interactions, such as predator-
prey, generalist-specialist, invasive-endangered species, or
parasite-host interactions (Waddle et al. 2010).

N-mixture models are increasingly valued as a tool to
account for imperfect detection for analysis of data from
observational surveys. To our knowledge, however, there is
only one study that extended N-mixture models to estimate
abundances of interacting species (Dorazio and Connor 2014),
in which a statistical model of counts from community-level
surveys was developed to estimate the correlation in abun-
dances between species with similar traits, accounting for im-
perfect detection. Their main aim was to determine “whether
the effects of environment or interactions between species
were more influential in determining the abundances of in-
dividual species,” which is an important question of com-
munity ecology (McGill et al. 2006). In our study, we aimed
to test whether a dominant species negatively impacts on
populations of subordinate species and to estimate how im-
portant this impact is. This is a major issue in conserva-
tion biology, because to decide whether a species should
be subject to some form of population management, deci-
sion makers need to know whether the species indeed nega-
tively impacts on populations of endangered species (Linder
et al. 2003).

There are several assumptions of our approach that need
to be taken into account. For example, an important as-
sumption of N-mixture models is that detection probabil-
ity of individuals is independent of other individuals, which
may often be violated in the field (Martin et al. 2011). This
could also be the case in amphibian monitoring, because
This content downloaded from 131
All use subject to University of Chicago Press Term
males engaged in acoustical competition with other males
may increase their calling rate compared with lonely males
(Bosch and Marquez 2001) and because females do not call
and therefore their detection probability is lower compared
with males. Such behavioral effects may cause additional
variation in detection probability that is difficult to describe
with visit- or site-specific covariates in the detection model.
Martinetal. (2011)successfullyappliedabeta-binomialmix-
ture model to account for the additional variation in detec-
tion probability due to correlated singing of individuals. In-
stead of using a beta distribution to model the additional
variation in detection probability, we added an individual
random effect to the detection model in order to account
for the unexplained variance in detection probability be-
tween visits and between sites, which is conceptually simi-
lar to a beta distribution (Royle and Dorazio 2008). Simu-
lation scenario 4 shows that our model is able to accurately
estimate effects of the dominant species on the subordinate
species population size also if the assumption is violated
that individuals were detected independently of each other.
Another concern is that niche differences and direct inter-

actions among species are difficult to tease apart (Wisz et al.
2013): a speciesmight bemissing at a site because of unfavor-
able habitat or because of competitive exclusion by other spe-
cies. This is particularly problematic if (unknown) factors
that influence population sizes of both the dominant and
the subordinate species are not included in the models. In
our case study on amphibians, it might be possible to im-
prove the model by including further covariates to describe
variation in population size among sites. For example, one
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Figure 2: Total population sizes of toad species in the Swiss canton of Aargau. Total population sizes of yellow-bellied toad (A), common
midwife toad (B), and natterjack toad (C) over all 481 surveyed sites were estimated under the current population size of water frogs (with)
and under the assumption that water frogs were absent from all sites (without). Given are medians and 95% credible intervals.
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could potentially include covariates describing the terres-
trial habitat in the surroundings of the sites, such as the pres-
ence of busy roads or whether the site is surrounded by for-
ested area (Van Buskirk 2005; Hartel et al. 2010; Ficetola
2015). In our study, we added random effects for the pop-
ulation sizes of the dominant and the subordinate species
to the linear models, which likely reduced bias that would
have been induced by unaccounted heterogeneity in local
population sizes (Royle and Dorazio 2008).
Case Study: Effect of Water Frogs on Native Toad Species

For 8.4% of the amphibian species of the world, “invasive
species or other problematic species and genes” have been
listed as a threat, according to the International Union for
Conservation of Nature Red List of Threatened Species
(www.iucnredlist.org; accessed June 9, 2015). Predation from
or competition with invasive species is thus an important
factor for the worldwide decline of amphibian populations.
In Central Europe, it is well established that the repeated
introductions and spread of Eurasian marsh frogs had im-
portant implications on populations of the native pool frog,
which now seems to be extinct in many parts of its range
in which Eurasian marsh frogs have been introduced (Vor-
burger and Reyer 2003; Dubey et al. 2014). Note that we here
use a broad definition of invasive species, encompassing spe-
cies introduced by humans, as well as native species and
their hybrids that rapidly become dominant (Valery et al.
2013). We therefore consider the Eurasian marsh frog as
an invasive species, although it is not clear whether it should
be considered native or introduced, because of the complex
genetic system of water frog species and their hybrids that is
possibly the result of repeated introductions or hybridization
with closely related native species (Vorburger and Reyer
2003; Luquet et al. 2011; Dubey et al. 2014).

To our knowledge, the only study that assessed the im-
pact of invasive Eurasian marsh frogs on other amphibian
species found no evidence that the presence of native yellow-
belied toads was negatively affected by the presence of Eur-
asian marsh frogs (Cayuela et al. 2013). This study was
based on presence-absence data and not on counts of indi-
viduals. The authors speculated that the apparent absence
of negative impacts could be due to the early stage of Eur-
asian marsh frog invasion at their study site. In contrast, in
our study area, where the invasion of Eurasian marsh frogs is
at a more advanced stage (Dubey et al. 2014), we found clear
indications that the population sizes of endangered yellow-
bellied toads and commonmidwife toads were negatively re-
lated to the population size of water frogs, while the effect
was less clear in natterjack toads. Our results thus suggest
that the spread of Eurasian marsh frogs and of its hybrids
with the pool frog in Central Europe have resulted in a re-
placement of endangered toad species.
This content downloaded from 131
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Dominant species such as water frogs may have strong
effects on subordinate species through predation or compe-
tition if they occur at the same sites. Still, however, water
frogs may only marginally affect the total population size
of an endangered toad species if they do not share the same
habitat niche and, thus, if they rarely occur at the same sites.
We aimed to describe general niche differences between in-
vasive and endangered species by including variables de-
scribing differences in water bodies (i.e., elevation, size of
the surface of water bodies, occurrence of fish, strong fluc-
tuations of water level, occurrence of covering vegetation).
The estimated effect of invasive species population on en-
dangered species population (h in our model) is then the ef-
fect if the two species occurred at the same sites. However,
the flexible Bayesian modeling framework that we applied
additionally allowed us to estimate the effect of water frog
populations on the total population size of the endangered
species at the entire study site, by comparing the total popu-
lation size of an endangered species under the current abun-
dance of water frogs with the predicted total population size
under the assumption that water frogs were removed from
all surveyed sites. The effect of water frogs on the total pop-
ulation size of an endangered species would be particularly
large if the effect of water frogs occurring at the same sites
as the endangered species is large (i.e., h≪ 0) and if water
frogs often occur at the same sites as the endangered species.
Even if the precision of the effect on the total population is
relatively small, as in our study case, this effect of an inva-
sive species on the total population sizeof anendangered spe-
cies seems an important measure to inform decision makers
about current effects of an invasive species on populations of
endangered species.
Although we used relatively simple measures to describe

the characteristics of the water bodies at the sites, we found
clear differences in habitat relationships among the three
toad species (i.e., differences in realized habitat niche): while
the commonmidwife toad seemednot very choosy, the natter-
jack toad was associated with sites with early successional
water bodies without covering vegetation around or within
the water body and with large variation in water level. The
selectivity of yellow-bellied toads was intermediate between
the two other toad species in that theywere associatedmainly
with sites withwater bodies with large variation inwater level
(table 1). It seems important to include such covariates tode-
scribe niche differences, because if they are not accounted
for, studies may report apparent negative or even positive in-
teractions between species that may arise simply because the
species prefer either different or the same habitats. As a proof
of concept, we reanalyzed the data while removing all co-
variates from the models (results not shown), which led to
estimates of true local population sizes of water frogs that
were positively related to the local population size of yellow-
bellied toads but negatively related to the population size of
.152.034.157 on July 10, 2016 23:43:48 PM
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common midwife toads and natterjack toad. This indicates
that our covariates were effective in describing niche differ-
encesbetweenwater frogs and toad species and suggestsniche
overlap between water frogs and yellow-bellied toads and
niche differences between water frogs and natterjack toads
and commonmidwife toads.
Conclusion

We suggest that our model of species abundance data is a
useful extension of existing approaches by attempting to
account explicitly for imperfect detection of individuals in
species interactions. As shown in the case study on water
frogs and toad species, the model is useful if applied to ob-
servational surveys from biodiversity monitoring programs
to assess the potential impact of invasive species. According
to our results, the invasion of Eurasian marsh frogs and of
its hybrids with the pool frog appears to be a threat to sub-
ordinate toad species in Central Europe. To decide which
dominant species should be subject to some form of popu-
lation management, decision makers need to know which
of the species indeed negatively impact populations of en-
dangered species (Linder et al. 2003) and, preferably, how
important the impact is. Our approach allows us to timely
quantify such negative impacts of species interactions on
populations of endangered species.
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