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Introduction 
The lack of research reproducibility has caused growing concern across various scientific fields [1–
4]. Today, there is widespread agreement, within and outside academia, that scientific research is 
suffering from a reproducibility crisis [5,6]. Even in an optimal and controlled setting, researchers 
might inadvertently reach different conclusions when multiple steps of the analysis are decided upon 
[7,8]. As we move beyond the state of crisis, some of the major causes of irreproducible research 
have been identified, which allow us to advocate good research practice (GRP). Indeed, powerful 
solutions are available, for example preregistration of study protocols and statistical analysis plans, 
sharing of data and analysis code, and adherence to reporting guidelines. Although these and other 
best practices may facilitate reproducible research and increase trust in science, it remains the 
responsibility of researchers themselves to actively integrate them into their everyday research 
practices. 
 
Enhancing research quality and combatting causes of irreproducible research is directly linked to 
how the next generation of young researchers is trained to conduct scientific work. Contrary to 
ubiquitous specialized training, cross-disciplinary courses on best practices that enhance the quality 
of research are often lacking. This is unfortunate, as the intersections between disciplines offer a 
space for peer-evaluation, mutual learning and sharing best practices. In medical research, 
interdisciplinary work is inevitable. For example, planning and conducting clinical trials may require 
experts with diverse backgrounds, including clinical medicine, pharmacy, biostatistics, evidence 
synthesis, nursing and implementation science. They contribute to study protocols, statistical analysis 
plans, the conduct of the clinical trial and the generation and interpretation of results. Bringing young 
researchers with diverse backgrounds together to exchange knowledge and learn about problems and 
solutions in everyday research practice adds value and improves the quality of research. 
 
This paper aims to provide early career researchers a useful introduction to GRP. The selection of 
rules is based on feedback from students, our experiences of teaching GRP courses at the University 
of Zurich as well as on the views of a diverse group of experts from within the Swiss Reproducibility 
Network (www.swissrn.org). This cross-disciplinary exercise resulted in a list of ten simple rules 
proposed to foster GRPs for early career scientists. This is neither an exhaustive list nor does it aim 
to address and systematically summarize the wide spectrum of issues including research ethics and 
legal aspects (e.g., related to misconduct, conflicts of interests and scientific integrity). We focused 
on practical advice for early career researchers at the different stages of every-day research: from 
planning to conduct and reporting of research. For a more comprehensive overview on GRPs we 
point to the United Kingdom’s Medical Research Council's guidelines [9] and the Swedish Research 
Council’s report [10]. While the discussion of the rules may predominantly focus on clinical research, 
much applies, in principle, to basic biomedical research and research in other domains as well. 
 
The ten proposed rules may serve multiple purposes: an introduction to relevant concepts to improve 
research; a primer for early career researchers on what to expect in courses related to GRPs; and 
finally, a starting point for lecturers who are planning such courses to further enhance research quality 
at their own institutions. The ten rules are grouped according to planning (4 rules), conducting (4 
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rules), and reporting of research (2 rules); see Figure 1. These principles can (and should) be 
implemented as a habit in everyday research practice, just like tooth brushing. 

 
 

Figure 1: The ten simple rules in good research practice (GRP) grouped in the planning of research, 
conducting of research and reporting of research. 

Planning of Research 

Rule 1: Specify your research question 

Coming up with a research question is not always simple and may take time. A well-developed 
research question is relevant, and for a study to be successful it should be narrow and clear. In 
evidence-based research, prior studies are assessed in a systematic and transparent way to identify a 
research gap for a new study that answers a question that matters [11]. It is good advice to look for 
recent papers that provide a comprehensive overview of the current state of research in the field. 
Particularly, review papers and perspective papers are ideal to start with. For example, imagine a 
paper titled “SARS-CoV-2 and COVID-19: The most important research questions”.1 While this 
would be a great kick-off, systematic assessments of research gaps are even better to consider than 
opinion-based research priorities. 
 
Once a first research question is drafted, it should be further developed and refined. It is natural to 
be in doubt at the beginning of the process—scientists believe in the theory to carry forward but are 
sceptical as well [12]. In clinical research and evidence-based medicine there is an approach called 

 
1 A paper with this title does actually exist. 
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PICOT (population, intervention, comparator, outcome, and time frame) with a set of criteria that 
can help framing a research question [13]. From a well-developed research question, subsequent steps 
will follow, which may include the exact definition of the population, the outcome, the data to be 
collected, and the sample size that is required. Next, find out if others find the idea interesting as well 
and whether it might promise a valuable contribution to the field. Some would argue that one should 
not ask only colleagues or researchers about which questions matter, but primarily the public and 
patients as well. 
 
As you read these lines you may wonder: How does this apply to research that is less theory-driven, 
for example to lab experiments that coincidentally find something unexpected? Indeed, Alexander 
Fleming discovered penicillin in a happy accident. Likewise, Christopher Columbus had a totally 
different goal in mind as he discovered America. In exploratory research, no or only a vague 
hypothesis is required. Both exploration and confirmation are needed in science [14], and they have 
their own strengths and limitations. However, it is important to decide whether the research is 
exploratory or confirmatory in the first place and not confuse the two [15]. 

Rule 2: Write and register a study protocol 

In clinical research, registration of clinical trials has become a standard since the late 1990 and is 
now a legal requirement in many countries. Such studies require a study protocol to be registered, for 
example with ClinicalTrials.gov, the European Clinical Trials Register, or the World Health 
Organization’s International Clinical Trials Registry Platform. Similar effort has been implemented 
for registration of systematic reviews (PROSPERO). Study registration has also been proposed for 
observational studies [16] and more recently in preclinical animal research [17] and is now being 
advocated across disciplines [18,19]. Often the term “preregistration” is used and the process is 
facilitated by the Open Science Framework (OSF) that supports registration of study protocols across 
all research fields. 
 
Study protocols typically document at minimum the research question and hypothesis, a description 
of the population, the targeted sample size, the inclusion/exclusion criteria, the study design, the data 
collection, the data processing and transformation, and the planned statistical analyses. Preregistering 
study protocols not only helps reducing publication bias but also prevents hindsight biases that could 
affect the outcome of a study. Registration of hypotheses, procedures and planned analyses can 
therefore safeguard honest research [20] and minimize research waste [21,22]. But the registration 
of studies should be more often under scrutiny by comparing the reported research to what was 
actually written in the protocol, and not doing so may be a serious issue. 
 
Note that registration does not mean that researchers have no flexibility to adapt the plan as needed. 
Indeed, new or more appropriate procedures may become available or known only after registration 
of a study. Therefore, a more detailed statistical analytical plan can be amended to the protocol before 
the data are observed or unblinded [23,24]. Likewise, registration does not exclude the possibility to 
conduct exploratory data analyses—they do, however, have to be clearly reported as such. 
 
To go even one step further, registered reports are a novel article type of publishing research to 
incentivize rigorous study design, methodology and statistical analysis—irrespective of the ultimate 
study outcome [25]. With registered reports, researchers lay out their hypotheses, research methods, 
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and analysis plans, and peer reviewers decide whether to accept them before anyone knows the 
study’s results effectively leading to higher quality research [26]. Journals from various disciplines 
increasingly support registered reports [27] and assign reviewers a more active role where they can 
identify problems and have an impact on the design and analysis of the study prior to data collection 
and analysis. 

Rule 3: Reduce potential sources of bias 

Bias is a distorted view in favor of or against a particular idea or thing. In statistics, bias is a 
systematic deviation of a statistical estimate from the (true) quantity it estimates. Bias can invalidate 
our conclusions, and the more bias there is, the less valid they are. For example, in clinical studies, 
bias may mislead us into reaching a causal conclusion that the difference in the outcomes was due to 
the intervention or the exposure - although it is actually not true. This is a big concern, and therefore 
potential sources of bias are usually assessed in clinical trials [28] and observational studies [29,30]. 
 
There are different types of biases that can occur in a study [31]. A well-known and frequent example 
is selection bias which is present when participants differ systematically from the population of 
interest, or allocation bias in RCTs when the compared groups differ systematically in some 
important aspect beside the intervention or exposure. Information bias, another frequent example of 
bias, arises from systematic differences in the collection, recall, recording or handling of data. An 
example of information bias was observed when in 1998 an alleged association between the measles-
mumps-rubella (MMR) vaccine and autism was reported. The reason was that parents of autistic 
children tended to recall the onset of autism after MMR more often than other parents [32]. But many 
other biases exist; for a comprehensive overview see the Oxford University’s Catalogue of Bias [33]. 
 
The prevention or at least reduction of bias merits a “ten simple rules” article on its own. There is a 
large body of literature on bias, and the previously mentioned catalogue of bias [33] also provides 
preventive steps. To minimize selection bias, the choice of a control group or control condition is 
critical and affects the inference that can be drawn. For example, in a case-control study, the control 
group should be representative of the population that produced the cases. Allocation bias in 
randomized controlled trials can be addressed by allocation concealment. Prevention of information 
bias can be achieved by using objective rather than subjective measurements or blinded outcome 
assessments. Standardized data collection is also critical by using the same method for data collection 
in both groups and not, for example, collecting data by an interview in one group and by phone in 
the other. Even procedures that may seem “simple” such as measuring blood pressure can be affected 
by serious bias. Standardized operating procedures (SOP) and electronic lab notebooks [34] 
additionally help to follow well-designed protocols for data collection and handling. Despite the 
failure to mitigate bias in studies, complete descriptions of data and methods can at least allow the 
assessment of potential bias. 

Rule 4: Have a data management plan 

In 2020, two COVID-19 papers were retracted by leading medical journals after concerns about the 
data were raised. Only when data are available, the result can be verified, which increases trust in 
science. Today, data is more often recognized as a key outcome of research along the research paper. 
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Therefore, it is important to develop a strategy for the lifecycle of research data, including suitable 
infrastructure for long-term storage. 
 
The data lifecycle is described in a data management plan: a document that describes what data will 
be collected during research, how the data will be organized, stored, handled and protected during 
and after the end of the research project. A number of research funders require a data management 
plan in research grant submissions, and publishers like PLOS encourage authors to do so as well. 
 
The FAIR data principles (Findable, Accessible, Interoperable and Reusable) promote maximal use 
of research data and enable computational systems to access and reuse data with minimal human 
intervention [35]. FAIR principles require the data to be retained, preserved, and shared preferably 
with an immutable unique identifier and a clear usage licence. Appropriate metadata will help other 
researchers (or machines) to discover, process and understand the data.  
 
Data should as well be openly accessible in a public repository (such as Dryad, figshare, OSF, Zenodo 
or your institutional repository). However, in some instances, authors may not be able to make their 
data publicly available for legal or ethical reasons. In such cases, a data user agreement can indicate 
the conditions required to access the data. Journals highlight what are acceptable and what are 
unacceptable data access restrictions, and often require a data availability statement. 
 
Interoperability and reusability can amplify the scientific impact of the data and code produced during 
a research project. It can be helpful for early career researchers to reuse the data of another person 
from the same lab, or even for the same person after a long break on that project. Organizing the 
study artefacts in a structured way greatly facilitates the reuse of data and code within and outside 
the lab, enhancing collaborations and maximizing the research investment. 
 
Support and courses for data management plans are usually available at universities, and another ten 
simple rules paper for creating a good data management plan is dedicated to this topic [36]. 

Conducting of research 

Rule 5: Ensure research reproducibility 

Questionable research practices can lead to exaggerated findings and false conclusions and thus lead 
to irreproducible research [37]. Often questionable research practices are used with no bad intentions 
(as opposed to fraud and data fabrication, which may be less common), but because researchers lack 
the training to perform research of the highest quality. This becomes evident when methods sections 
explicitly describe such procedures, for example, to increase the number of samples until statistical 
significance was reached that supports the hypothesis. Thus, teaching GRPs may be (at least in 
theory) highly effective to enhance the quality of research. 
 
Several questionable research practices (QRPs) have been named [37]: 1. low statistical power, 2. 
pseudoreplication, 3. repeated inspection of data, 4. p-hacking, 5. selective reporting, 6. 
hypothesising after the results are known (HARKing) and 7. publication bias [38]. 
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The first two QRPs, low statistical power and pseudoreplication, can be prevented by proper planning 
and designing of studies, including sample size calculation and appropriate statistical methodology 
to avoid treating data as independent when in fact they are not. Statistical power is not equal to 
reproducibility, but statistical power is a precondition of reproducibility as the lack thereof can result 
in false negative as well as false positive findings (see rule 7). 
 
In fact, when early career researchers write a study protocol and statistical analysis plan, many of 
these QRPs are addressed. Preregistration, as described in rule 2, is considered best practice for this 
purpose. However, many of these issues can additionally be rooted in institutional incentives and 
rewards. Thus, a wider “culture change” is needed beyond what young researchers can achieve. Both 
funding and promotion are often tied to the quantity rather than the quality of the research output. At 
universities, still only few or no rewards are given for writing and registering protocols, sharing data, 
publishing negative findings, and conducting replication studies. 

Rule 6: Make your research open 

For many people, transparency is a natural feature of science, and adding “open” to the word 
“science” would seem simply redundant. However, in reality, science often lacks transparency. 
Several universities and research funders already implemented open science roadmaps to advocate 
free and public science as well as open access to scientific knowledge, with the aim of further 
developing the credibility of research. Open research allows more eyes to see it and critique it, similar 
to a principle to spot bugs in software (Linus's law). 
 
Many early career researchers already know about open science and even practice it. Open science 
has a wide scope, but one particular way to understand open science is to use it as a tool to document 
research output, and advance research and researchers’ careers, especially for early-career 
researchers. The increased visibility, retrievability, and citations of datasets can all help career 
building [39]. Therefore, institutions should provide necessary training, and hiring committees and 
journals should align their core values with open science, to attract excellent researchers who aim for 
transparent and credible research [40]. 
 
Open science makes the process of producing evidence and claims transparent and accessible to 
others [41]. Only with open science, readers can fully and appropriately assess the performed 
research. As science often progresses incrementally, making a study protocol and making data and 
methods readily available is crucial to facilitate knowledge building. Researchers often need to re-
create the work of others, especially if they have no access to it. For instance, computational 
notebooks using free software facilitate open access and reproducibility of the main results (e.g., R 
Markdown, Jupyter). Making both data and code open thus minimizes waste of funding resources 
and accelerates science, and consequently, funding agencies strongly support open science practices. 

Rule 7: Justify your sample size 

Lab researcher: “We always used 3 patients. That is what we have published before.” 
Biostatistician: “Three patients per group or in total?”   (Source: https://youtu.be/PbODigCZqL8) 

 
Box 1: A hypothetical conversation between lab researcher and biostatistician. 
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Too small studies can undermine research [42], but what is a small study? For one research field, a 
total of 30 patients may be average, but for another, 1,000 patients may be common. How large the 
sample size needs to be depends on the magnitude of effect you are interested in2, and how large the 
probability to obtain a “statistically significant” effect should be, given there really is an effect 
(among other factors). This concept is based on the philosophy of statistical hypothesis testing and is 
known as statistical power: the probability to reject the null hypothesis when it is in fact false. The 
statistical power required by funding agencies is often 80% or larger. A worthwhile alternative for 
planning the sample size that puts less emphasis on null hypothesis testing is based on the desired 
precision of the study; for example, one can calculate the sample size that is necessary to obtain a 
desired width of a confidence interval for the targeted effect [43,44]. 
 
Early-career researchers in our GRP courses often identify sample size as an issue in their research. 
For example, they say that they work with a low number of samples due to slow growth of cells, or 
they have a limited number of patient tumor samples (or primary cell lines) but at the same time a 
high variation within the tumor samples. The problem here is that if your sample size is too low, your 
study has low statistical power and has a high risk of committing Type II errors (i.e., a false negative 
result). In other words, you are unlikely to find a result even if there is a true effect. 
 
But there are also other issues with small studies. When an effect from a small study was selected for 
drawing conclusions because it is statistically significant, low power reduces the probability that the 
estimated effect size comes close to the true effect size [42]. The reason is that with low power, 
studies that due to sampling variation find larger (overestimated) effects are much more likely to be 
significant than those that happen to find smaller (more realistic) effects. Thus, in such situations 
effect sizes are often overestimated. The general phenomenon that small studies often report more 
extreme results than large studies is called the small-study effect [45]. In any case, an underpowered 
study is a problematic study, no matter the outcome. 
 
Low-powered studies can be avoided by performing a sample size calculation to find out the required 
sample size of the study (unless your research is purely exploratory). As a solution and to support 
larger studies, team science and collaboration is crucial when one's own resources are limited. 

Rule 8: Get statistical expertise 

All early-career researchers have specialist training in their field, but basic training in statistics 
largely varies across fields. It is not surprising that in the small surveys we conduct in our GRP 
courses, early career researchers seem to find good statistical methodology the most important 
training to enhance their own research (Figure 2). Nurses, pilots and many other professionals have 
mandatory continuing development and training. Likewise, researchers could profit from better 
training in statistics and GRP [46]. 
 

 
2 Not all research looks at effects and casualty. In diagnostic testing, one would be interested in an anticipated minimal 
sensitivity or specificity. 
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Figure 2: Early-career researchers (N=84) at University of Zurich that participated in the Good Research 
Practice (GRP) course responded to the question “What training would you find most important to enhance 
your personal research?”. 
 
It would help if more researchers were familiar with correct interpretations and possible 
misinterpretations of statistical tests, p-values, confidence intervals, and statistical power [47]. 
Specifically, the traditional dichotomisation into significant yes/no is seldom appropriate and we 
instead recommend interpreting p-values in a quantitative way in terms of the evidence against the 
null hypothesis [48]. A p-value around 0.05 provides only weak evidence, as is best illustrated by the 
associated replication power: the probability that a hypothetical replication study of the same design 
will lead to a statistically significant result is only 50% [49], and is even lower in the presence of 
publication bias and regression to the mean (the phenomenon that replication effect estimates are 
often smaller than the estimates in the original study) [50]. Claims of discovery of new effects should 
therefore be based on smaller p-values providing stronger evidence against the null hypothesis [51].  
 
Furthermore, a study result and its associated p-value and confidence interval are just the tip of the 
iceberg [52]. The statistical analysis has many stages, for example data processing, cleaning, 
transformation, addressing missing data, and statistical inference. Errors and pitfalls can creep in at 
any stage, and even a tiny error can have a big impact on the result [53].  
 
Training in basic statistics, statistical programming and reproducible analyses, and better 
involvement of data professionals in academia is necessary. University departments sometimes have 
statisticians that can support researchers. Difficulties and statistical pitfalls can start already with 
study design and sample size calculation [54]. Therefore, not surprisingly, statisticians often urge 
researchers to get them involved early in the process and on an equal footing, and not just at the end 
of a project to perform the final data analysis [55]. 

Reporting of research 

Rule 9: Report all findings 

Researchers, reviewers or publishers sometimes find study results not interesting or worth publishing. 
As a consequence, studies are not published, also known as the file drawer effect [56], or outcomes 
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and analyses are only selectively reported in research reports [57]. This phenomenon is more likely 
to occur when study results were found to be statistically non-significant.  
 
Often a statistically non-significant result is interpreted as a “null” finding, but this is problematic. It 
is important to understand that a non-significant finding doesn’t necessarily mean a null effect 
(absence of evidence is not evidence of absence, see [58]). Perhaps the study was just underpowered 
and the cumulative evidence from multiple single studies can indeed provide sufficient evidence for 
the research hypothesis. Another argument is that a confidence interval that contains the null value 
often also contains non-null values of high practical importance. Only if all the values inside the 
confidence interval are deemed unimportant (from a practical perspective), then it may be fair to 
describe a result as a null finding [59]. For example, clinical equivalence studies provide a formal 
framework to establish that the efficacy of two treatments is equivalent and require pre-specification 
of an interval of equivalence [60].  
 
We should never report ‘no difference’ or ‘no association’ just because a p-value is larger than 0.05 
or, equivalently, because a confidence interval includes the “null” value representing no difference 
between the groups [59]. However, studies that report statistically non-significant results often use 
misleading reporting strategies (“spin”) to claim that the experimental treatment is generally 
beneficial, despite a statistically non-significant difference for the primary outcome [61,62]. 
 
The extent of publication bias in the literature is illustrated by the overwhelming frequency of 
statistically significant findings [63]. For example, a study extracting p-values from MEDLINE 
abstracts and full-texts available in PubMed Central showed that 96% of the text-mined records 
reported at least one statistically significant p-value [64], which seems implausible in the real world. 
Another study plotted the distribution of more than one million z-values from Medline – the huge 
gap from −2 and 2 is striking, showing particularly clearly that statistically non-significant results 
are often unpublished [65]. In addition, an overview of studies investigating the likelihood of being 
published showed that positive studies (i.e., statistically significant, perceived as striking or showing 
a beneficial effect) were 4 times more likely to get published than negative studies [66]. 
  
Findings that are not being published have a tremendous impact on the research ecosystem, distorting 
our knowledge of the scientific landscape by perpetuating misconceptions, and jeopardizing 
researchers and the public trust in scientific findings. In clinical research, publication bias can mislead 
care decisions and harm patients, e.g., when treatments appear useful despite minimal or even absent 
benefits reported in studies that were not published and thus are unknown to physicians [67]. 
Moreover, publication bias also directly affects the formulation and proliferation of scientific 
theories, which are taught to students and young researchers, thereby perpetuating biased research 
from the core. It has been shown in modeling studies that unless a sufficient proportion of negative 
studies are published, a false claim can become an accepted fact [68] and the false positive rates 
influence trustworthiness in a given field [69]. 
 
In sum, “null” findings are undervalued. They need to be more consistently reported at the study level 
or systematically investigated at the systematic review level. Researchers have their share of 
responsibilities, but there is clearly a lack of incentives from promotion and tenure committees, 
journals and funders. 
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Rule 10: Follow reporting guidelines 

Study reports need to faithfully describe the aim of the study, what was done including potential 
deviations from the original protocol, and what was found. Yet evidence of discrepancies between 
protocols and research reports and insufficient quality of reporting are numerous [57,70–74]. 
Reporting deficiencies clearly jeopardize our ability to clearly communicate findings, replicate 
studies, make informed decisions and build on existing evidence, wasting time and resources invested 
in the research [75]. 
 
Reporting guidelines aim to provide the minimum information needed on key design features and 
analysis decisions, ensuring that findings can be adequately used and studies replicated. In 2008, the 
EQUATOR3 (Enhancing the QUAlity and Transparency of health Research) network was initiated 
to provide reporting guidelines for a variety of study designs along with guidelines for education and 
training on how to enhance quality and transparency of health research. Currently, there are 468 
reporting guidelines listed in the network, mostly focusing on health research; see some examples in 
Table 1. Furthermore, following the ICMJE recommendations, medical journals are increasingly 
endorsing reporting guidelines [76], in some cases making it mandatory to submit the appropriate 
reporting checklist along with the manuscript. 
 
The use of reporting guidelines and journal endorsement have led to a positive impact on the quality 
and transparency of research reporting, but improvement is still needed to maximize the value of 
research [77,78]. 
  
Table 1: Examples of reporting guidelines for different study types, see https://www.equator-network.org/ for 
the complete collection. 

Name Study type 

CONSORT Randomised trials 

STROBE Observational studies 

PRISMA Systematic reviews 

SPIRIT Study protocols 

STARD/TRIPOID Diagnostic/prognostic studies 

Conclusions 
Good research practice involves many topics. Here, we focus on practical guidelines directed to early 
career researchers in planning, conducting and reporting of research. Others have aligned GRP with 
similar topics [79,80]. Even though we provide ten simple rules, the word “simple” should not be 
taken lightly. Putting the rules into practice usually requires effort and time, especially at the 
beginning of a research project. However, time can also be redeemed, for example, when certain 

 
3 https://www.equator-network.org/ 
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choices can be justified to reviewers by providing a study protocol, or when data can be quickly 
reanalyzed by using computational notebooks and dynamic reports. 
 
Researchers have field-specific research skills, but sometimes lack the awareness of best practices 
that are implemented in other fields (e.g., clinical research). Cross-disciplinary exchange should 
enhance self-correcting processes and best practices. Universities should provide GRP courses to 
train the next generation of scientists. They are an important building block to combat irreproducible 
research; however, GRP courses are not sufficient to drive a culture change. Many of the proposed 
solutions are still being discussed and the search for better solutions will and should be an ongoing 
task in science. 
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